Influence de l'article en biologie évolutive

(Source: Web Of Science Août 2019)

Questions récurrentes en génétique évolutive

- Quelles sont les bases génétiques des variations phénotypiques observées dans les populations?
- Quelles sont les bases génétiques de la divergence entre populations et espèces?
- En particulier quelles sont les bases génétiques de l'adaptation?

Génétique de l'adaptation

- Combien de gènes?
 - Modèle oligogénique vs polygénique
- Quels effets?
 - Effets faibles vs forts
 - Additivité vs épistasie
 - Pléiotropie vs modularité
- Quels types?

۲

. . .

Protéines vs région régulatrice

- Très grand nombre de gènes à effet additifs très faibles
- Théorème fondamental (1930) $\Delta \overline{w} = V_A(w)$
- Equation de Robertson (1966) $\Delta \overline{z} = h^2 Cov(z,w) = \beta V_A(z)$
- La sélection n'affecte pas les fréquences alléliques, diminution de la variance uniquement par dérive → réponse totale (Robertson 1961):

 $R^{\infty} = 2N_e\beta V_G(0)$

Justification / argument géométrique (Fisher 1930)

Justification / argument géométrique (Fisher 1930)

• Justification / argument géométrique (Fisher 1930)

Plus une mutation a un effet faible, plus elle a de chance d'être avantageuse (max = $\frac{1}{2}$)

Effet de la mutation

- Point de vue micromutationiste (continuité de Darwin)
- Pas vraiment de programme de recherche pour chercher les gènes de l'adaptation

Critique du micromutationisme: Arguments empiriques

Approches QTL

Distribution des effets de 74 QTL Tomate cultivée x tomate sauvage

 \rightarrow QTLs avec effet > 10%

Evolution expérimentale

Vol. 138, No. 6

The American Naturalist

December 1991

LONG-TERM EXPERIMENTAL EVOLUTION IN *ESCHERICHIA COLI*. I. ADAPTATION AND DIVERGENCE DURING 2,000 GENERATIONS

RICHARD E. LENSKI,* MICHAEL R. ROSE, SUZANNE C. SIMPSON, AND SCOTT C. TADLER

→ Adaptation par pas détectables

Critique du micromutationisme: Arguments théoriques

Kimura: retour sur le modèle de Fisher

- Mutations d'effet faible:
 - Plus de chance d'être avantageuses
 - Plus de chance d'être perdues par dérive

➔ Contribution des mutations d'effet intermédiaire à l'adaptation

Critique du micromutationisme: Arguments théoriques

Kimura: retour sur le modèle de Fisher

- Mutations d'effet faible:
 - Plus de chance d'être avantageuses
 - Plus de chance d'être perdues par dérive

➔ Contribution des mutations d'effet intermédiaire à l'adaptation

Orr: anlayse d'une marche adaptative

EVOLUTION

INTERNATIONAL JOURNAL OF ORGANIC EVOLUTION

PUBLISHED BY THE SOCIETY FOR THE STUDY OF EVOLUTION

Evolution, 52(4), 1998, pp. 935-949

THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION

- → Mutations fixées pendant l'adaptation
- Distribution ~ exponentielle
- D'effet de plus en plus petit
- Indépendant de n
- Indépendant de la distribution des mutations

- Programme de recherche pour rechercher les bases génétique de l'adaptation
 - Justifications théoriques
 - Développement des données génomiques
 - Développement des outils statistiques
 - Développement des outils de calcul
- Développements théoriques de la génétique quantitative évolutive

(Bulmer, Lande, Barton, Turelli,...)

Approches QTL sur traits a priori adaptatifs

Ex: Adaptation au cours de la domestication

- Recherche de signatures génomiques de l'adaptation
 - Si effets "forts" → signature génomique de sélection
 - Nombreux développements statistiques

(Oleksyk et al. 2010)

GWAS et scans génomiques: des QTLs aux QTNs

La critique du « QTN program »

EVOLUTION JANUARY 2012

THE QTN PROGRAM AND THE ALLELES THAT MATTER FOR EVOLUTION: ALL THAT'S GOLD DOES NOT GLITTER

Matthew V. Rockman^{1,2}

- « Known causal variants are not typical QTNs »
- « The LOD that failed: QTLs are uninformative »
- « Theory does not Require a Preponderance of Large-Effect QTNs »
- « Fisher redivivus: unbiased QTNs are often small-effect polygenes »
- « There is a relationship between phenotypic effec size and molecular function »

Le retour du modèle infinitésimal

Theoretical Population Biology 118 (2017) 50-73

The infinitesimal model: Definition, derivation, and implications N.H. Barton^a, A.M. Etheridge^b, A. Véber^{c,*}

Cell

Leading Edge
Perspective

An Expanded View of Complex Traits: From Polygenic to Omnigenic

Evan A. Boyle,^{1,*} Yang I. Li,^{1,*} and Jonathan K. Pritchard^{1,2,3,*}

Le retour du modèle infinitésimal

- Prédictions à court terme / VA: OK
- Prédictions à long terme possible sous certaines conditions
 - Nombreux gènes
 - VP observée << potentielle
- Epistasie non-directionnelle
- Recombinaison libre

Le retour du modèle infinitésimal

- Signatures génomiques des différents régimes
 - PLOS STREET

...to subttle frequency shift

(Höllinger et al. 2019)

Limites du modèle infinitésimal

- Conditions où l'épistasie affecte fortement l'évolution de VA, donc l'évolution à long terme
 - Sélection forte
 - Epistasie directionnelle
- Conséquences
 - Augmenter ou diminuer les prédictions à long terme
 - Conduire à plusieurs chemins et équilibres alternatifs
 - Conduite à des états polymorphes

Limites du modèle infinitésimal

- Liaison génétique et épistasie
 - Deux régimes en fonction recombinaison / épistasie

(Neher et Shraiman 2009)

Conclusions

- Différentes utilités et limites en fonction du contexte (ex: prédiction d'un phénotype et prédiction de la dynamique de l'adaptation)
- Développements théoriques GQ évolutive
- Que rechercher dans les génomes?
- Plus de biologie:
 - Développement \rightarrow construction du phénotype
 - Contexte écologique \rightarrow sélection plus explicite