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Questions récurrentes en génétique évolutive 

• Quelles sont les bases génétiques des variations 
phénotypiques observées dans les populations? 

• Quelles sont les bases génétiques de la divergence entre 
populations et espèces? 

• En particulier quelles sont les bases génétiques de 
l’adaptation? 



Génétique de l’adaptation 
• Combien de gènes? 

•  Modèle oligogénique vs polygénique 

• Quels effets? 
•  Effets faibles vs forts 
•  Additivité vs épistasie 
•  Pléiotropie vs modularité 

• Quels types? 
•  Protéines vs région régulatrice 

• … 



Vision Fisherienne 
•  Très grand nombre de gènes à effet additifs très faibles 

•  Théorème fondamental (1930) 
 
• Equation de Robertson (1966) 

•  La sélection n’affecte pas les fréquences alléliques, 
diminution de la variance uniquement par dérive à 
réponse totale (Robertson 1961):  

 
 
 

Δw =VA(w)

Δz = h2Cov(z,w) = βVA(z)

R∞ = 2NeβVG (0)



Vision Fisherienne 
•  Justification / argument géométrique (Fisher 1930) 
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Trait 2 
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Vision Fisherienne 
•  Justification / argument géométrique (Fisher 1930) 
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Plus une mutation a un effet faible, 
plus elle a de chance d’être 
avantageuse (max = ½) 
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Vision Fisherienne 
• Point de vue micromutationiste (continuité de Darwin) 

è  Pas vraiment de programme de recherche pour chercher 
les gènes de l’adaptation 



Critique du micromutationisme: 
Arguments empiriques 

Approches QTL Evolution expérimentale 
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LONG-TERM EXPERIMENTAL EVOLUTION IN ESCHERICHIA COLI. 
I. ADAPTATION AND DIVERGENCE DURING 2,000 GENERATIONS 
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Abstract.-We assess the degree to which adaptation to a uniform environment among indepen- 
dently evolving asexual populations is associated with increasing divergence of those popula- 
tions. In addition, we are concerned with the pattern of adaptation itself, particularly whether 
the rate of increase in mean fitness tends to decline with the number of generations of selection 
in a constant environment. The correspondence between the rate of increase in mean fitness 
and the within-population genetic variance of fitness, as expected from Fisher's fundamental 
theorem, is also addressed. Twelve Escherichlia coli populations were founded from a single 
clonal ancestor and allowed to evolve for 2,000 generations. Mean fitness increased by about 
37%. However, the rate of increase in mean fitness was slower in later generations. There was 
no statistically significant within-population genetic variance of fitness, but there was significant 
between-population variance. Although the estimated genetic variation in fitness within popula- 
tions was not statistically significant, it was consistent in magnitude with theoretical expecta- 
tions. Similarly, the variance of mean fitness between populations was consistent with a model 
that incorporated stochastic variation in the timing and order of substitutions at a finite number 
of nonepistatic loci, coupled with substitutional delays and interference between substitutions 
arising from clonality. These results, taken as a whole, are consistent with theoretical expecta- 
tions that do not invoke divergence due to multiple fitness peaks in a Wrightian evolutionary 
landscape. 

The two most conspicuous features of biological evolution are adaptation of 
organisms to their environment and divergence of populations and species from 
each other. The contributions of natural selection, chance events, and historical 
constraints to adaptation and divergence are not easily separable. The divergence 
of populations may simply reflect their adaptation to different environments. Al- 
ternatively, genetic differences between populations may channel subsequent 
evolution so as to promote their further divergence even in the same environment 
(Wright 1932, 1982, 1988). And chance events, including both random genetic 
drift and the stochastic origin of mutations (Clarke et al. 1988), may give rise to 
differences between formerly identical populations subjected to uniform selection 
pressures (see, e.g., Cohan and Hoffmann 1986; Lenski 1988a). 

Bacterial populations have been used for some time to study evolutionary pro- 
cesses, such as mutation and natural selection (see, e.g., Luria and Delbruck 
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FIG. 3.-Trajectory of mean fitness for one of the 12 replicate populations. Filled circles, 
mean fitnesses, as originally estimated. Dalshed line, least squares linear regression for the 
original estimates, with the initial mean fitness constrained to 1. Solid line, fit of the step 
model, obtained by isotonic regression as described in the text, again for the original esti- 
mates and with the intercept fixed at 1. The largest apparent drop in mean fitness occurred 
between the 900- and 1,000-generation samples. HollowA triiangles, mean fitnesses as esti- 
mated by repeating the assays for the 900- and 1,000-generation samples. The drop in mean 
fitness is no longer apparent. Similar results obtained over all 12 populations support the 
hypothesis that observed drops in mean fitness represent experimental or sampling errors, 
and do not indicate nontransitive interactions in determining fitness. 

I errors, in which a steplike increase in mean fitness is claimed when it did not 
occur, and Type II errors, in which a steplike increase in mean fitness occurred 
but is not claimed. A more stringent level, such as p < .05, clearly may exclude 
many real steps, while an even less stringent level could, like the full model, 
include some spurious steps.) For each population, the resulting condensed model 
had two to five step increases in mean fitness. The trajectory of mean fitness is 
shown in figure 3 for one of the populations, along with the corresponding step 
and linear models. One can compute a mean square associated with the improved 
fit of the step model, relative to that of the linear model, by dividing the difference 
in the sum of squares explained by the two models by the difference in the degrees 
of freedom required by each; a partial F statistic is then calculated by dividing 
this mean square for the marginal improvement of the step model by its mean 
square error. For the population shown in figure 3, the marginal improvement of 
the step model relative to the linear model is significant at p < .05. In all 12 
populations, the corresponding improvement in fit is significant at p < .1 or less 
(for two of the populations, .05 < p < .1; for three others, .01 < p < .05; for six 
populations, .001 < p < .01; and for one population, p < .001). Evidently, the 
step model provides a significantly improved fit to the trajectories of mean fitness. 

The step model, averaged over all 12 populations, indicates a net increase in 
mean fitness of -0.37 during the 2,000 generations, with almost two-thirds of this 
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(Tanksley 1993) 

è QTLs avec effet > 10% 

Distribution des effets de 74 QTL 
Tomate cultivée x tomate sauvage 



Critique du micromutationisme: 
Arguments théoriques 

Kimura: retour sur le modèle de Fisher 

• Mutations d’effet faible: 
•  Plus de chance d’être 

avantageuses 
•  Plus de chance d’être perdues par 

dérive 
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è Contribution des mutations d’effet 
intermédiaire à l’adaptation 



938 H. ALLEN ORR

As Figure 2b shows, mutations of intermediate phenotypic
effect are now the most likely to contribute to adaptation.
Kimura's argument ignores differences in the rate at which

mutations of different size arise. This reflects his interest in
the effect of natural selection per se, not mutation, on the
distribution of allelic effects underlying adaptation. Put dif-
ferently, natural selection acts as a filter during adaptive evo-
lution: given some distribution of mutational effects, some
alleles will contribute to adaptation and others will not. Ki-
mura is interested in the properties of this filter, not in the
distribution of mutations fed into it. (For Fisher's claim was
not that small mutations are the stuff of adaptation because
they are the only mutations that occur, but because they are
the only mutations that are favorable.)
But Kimura's distribution is also not what it first seems.

Equation (2) provides the probability that factors of different
size x will contribute to the next adaptive substitution. I.e.,
Kimura's distribution yields the expected contributions of
mutations of different sizes to adaptation, where size is scaled
by some constant distance to the optimum, d/2. But equation
(2) does not take into account the fact that, during any bout
of adaptive evolution, the distance to the optimum progres-

magnitude of a mutation must instead be judged relative to
two quantities. First how large is the mutation relative to the
distance to the optimum? If the optimum is one unit away,
a mutation of size r = I is obviously large; but if the optimum
is 100 units away, a mutation of size r = I is small. (The
common claim that Fisher's result unfairly depends on his
assumption that the population is close to the optimum is
thus incorrect-all mutations are measured relative to the
distance to the optimum.) Second, and more subtly, how com-
plex is the organism? A mutation of a given size is "larger"
in a complex than in a simple organism, in the sense that
changes of a given magnitude are more likely to disrupt a
complex, tightly integrated organism than a simple one. (To
continue Fisher's analogy, an adjustment of one inch is large
if changing the height of a microscope's stage, but small if
changing the length of a hammer.) By measuring mutations
on the x scale, one can compare the sizes of mutations re-
gardless of distance to the optimum and organismal com-
plexity. A large mutation on this scale is simply one that has
a small chance of being favorable and a small mutation one
that has a greater chance of being favorable. As the results
presented below are mostly expressed in terms of Fisher's
standardized x scale, I will continue this usage of "large"
and "small" mutation. Indeed no other usage seems partic-
ularly meaningful.
Fisher's Figure 2a has often been interpreted as the ex-

pected distribution of factors contributing to adaptation (re-
viewed in Orr and Coyne 1992). But as noted this interpre-
tation ignores the probability of fixation (Kimura 1983). Mi-
croscopes and organisms differ in an important respect:
Whereas we are free to make any alteration we wish to a
microscope, evolution requires changes that are not only fa-
vorable but that escape stochastic loss. If the selection co-
efficient s for a favorable mutation is proportional to its phe-
notypic effect, Kimura argued that the rate of adaptive sub-
stitution k of mutations of size x is

k(x) ex: 2x[ 1 - ct>(x)]. (2)

FIG. 3. An adaptive "walk" to the optimum in a two-dimensional
(two-character) species. The length of each arrow (magnitude of
each vector) represents the "size" of a mutation. Our goal is to
find the distribution of sizes of mutations fixed in this stepwise
approach to the optimum (but for a high dimensional species).

sively shrinks as favorable substitutions occur. (Figure 3
shows an example of such an adaptive approach to the op-
timum for our simple case of a two-trait organism.) Kimura's
distribution does not therefore provide the size distribution
of factors fixed during an adaptive "walk" to the optimum,
for example, the distribution of sizes of factors shown in
Figure 3.

RESULTS

Preliminary Comments

Because evolution in n-dimensional space can be less than
intuitive, I have taken several steps to make the present treat-
ment more intelligible. First whenever an approximation
seemed useful, I have made it. Almost all of my analytic
results are therefore approximate. In all cases, however, ap-
proximations were checked against exact computer simula-
tions. These simulations are described below and in more
detail in Appendix 1. As we will see, the joint assumptions
of large n and weak selection allow several useful approxi-
mations. The simulation results, however, remain the "real"
results and the analytic theory is perhaps best viewed as a
heuristic attempt to make sense of these results. Although
simulations were performed at many different dimensions, I
focus on results obtained at n = 25 and n = 50 dimensions,
cases that were especially well-studied. Second, I have placed
much of the mathematics in Appendices. Third, I have set
off important results as numbered conclusions. The reader
who wishes to skip the mathematics can obtain the main
results by reading these numbered conclusions.
Adaptation occurs in Fisher's model with a large number

of dimensions n. Following Kimura (1983), I consider the
case in which adaptation is due to fixation of newly arising
unique mutations. My model is haploid and the population
size is large. Fitness falls off as a Gaussian function of dis-
tance from the optimum w(z) = exp( - z212), where z is mea-
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x exp{2kLE[xd/n}. But the number of substitutions, kLo need-
ed to travel any fixed fraction of the distance to the optimum
is a function of n. Equation (7) shows that the distance re-
maining to the optimum after kL substitutions is (I -
2E[xd/n)kL (Yn/2) and thus that the fraction of the original
distance remaining is = exp( -2E[xdkdn). Thus kL = -nln(l
- f)/2E[xd, where f is the fraction of the distance to the
optimum traveled. Substituting for kLo we arrive at one of
our main results. The distribution of factors fixed during ad-
aptation is

I I (X/(1-fl
ljI(x) = - In(1 _ f) :; L 4t[l - cI>(t)] dt, (IS)

which is independent of dimension, n. Indeed, the distribution
of factors fixed during adaptation depends on a single pa-
rameter, the fraction of the distance to the optimum traveled,f.
Simulations confirm that ljI(x) is well predicted by equation

(IS) and is independent of n. Figure 5, for instance, shows
that the distributions of factors fixed at n = 25 versus n =
50 are essentially identical and agree with equation (IS) (f
= 0.9; N = 50,000 substitutions in each case). This inde-
pendence is, of course, pleasing. The distribution of factors
fixed during adaptation is known whether or not anything is
known about an organism's "dimensionality."
The distribution of factors fixed over a walk to the optimum

shows a second striking property. Ignoring factors of very
small effect, Figure 6 shows that the mutations fixed during
adaptation are approximately exponentially distributed: ljI(x)
ex: exp( - Ax). (Because ljI(x) involves an overall factor of -II
lnt l - f), there will be somefat which this density is properly
normalized.) This exponential behavior has been confirmed
by simulation at many different dimensions. In all cases,
factors fixed are drawn from an approximately exponential
distribution with parameter A = 2.9.
Although the analytic expressions for ljI(x) are not obvi-

ously exponential, it is easy to show numerically that they
are approximately so (ignoring factors of small effect). This
is shown in Figure 6.
Third, once the population has traveled a reasonable dis-

X

FIG. 5. The size distribution of factors fixed during adaptation.
The curve gives the distribution predicted by equation (15), whereas
the open and filled points show the results of simulations at 11 =
25 and 11 = 50 dimensions, respectively. Many replicates of adaptive
evolution f = 0.9 of the way to the optimum were performed at
both dimensions, yielding N = 50,000 substitutions in each case.
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els some fixed fraction of the distance to the optimum, the
distribution is independent of dimension. To see this, ljI(x)
can be rewritten as a function of the distance traveled. For
large kL , the substitution process can be treated as continuous
and, after a change of variables (t = ex), equation (14) be-
comes ljI(x) = [2n/(kLE[xdx)] t[ I - cI>(t)] dt, where ti. =

o 0.5 1 1.5 2 2.5 3
FIG. 4. The distribution of factors fixed at (a) k = 1; (b) k = 5;
and (c) k = 10. The solid curves show the distributions predicted
by equation (8), whereas the points show simulation results. Ad-
aptation occurred at 11 = 25 dimensions and at least 2000 substi-
tutions (replicates) were recorded for each k. Axes are shown with
constant scales.
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It is almost impossible with any brevity to exemplify
the notion of adaptation. Just because adaptation con-
sists, even in the simplest cases, in a multiplicity of
correspondences between one sufficiently complicated
system, the organism itself, and another equally com-
plicated, the environment in which it finds itself. It is,
indeed, just this multiplicity that makes the thing rec-
ognizably adaptive.

-R. A. Fisher (1934)

Population genetics has had remarkably little to say about
adaptation. While an enormous literature has been devoted
to deleterious mutation-including endless analyses of mu-
tation-selection balance, genetic load, genomic mutation rate,
and the fate of slightly deleterious alleles-there is no com-
parable literature devoted to the population genetics of ad-
aptation. This vacuum is not, of course, absolute. We can
write down equations for the rate of increase of favorable
mutations, their probability of fixation, and the rate of adap-
tive substitution due to unique alleles-important pieces of
any mature theory of adaptation. But beyond such classical
results, the literature is surprisingly silent. This situation is
unfortunate. Phenotypic change through time, as well as phe-
notypic differences among taxa at any point in time, must
often reflect adaptive evolution.
Why then has adaptation been neglected? There are at least

two reasons. First, theorists have paid less attention to ad-
vantageous than deleterious mutations because experimen-
talists can provide less information about the former. Dele-
terious mutations, which are common and readily sampled
on short time scales (e.g., Mukai et al. 1972; Ohnishi 1977),
are far more easily studied than advantageous mutations,
which are rare and sampled only on evolutionary time scales
(but see Lenski and Travisano 1994). Although genetic anal-
ysis of experimental lines has provided a great deal of in-
formation about deleterious alleles, analogous analysis of
adaptive mutations would typically require crosses between
real taxa. The tools required for such studies were unavailable
in most species until recently.
Second, R. A. Fisher's (1930) early foray into the math-

ematics of adaptation seemed conclusive. Fisher considered
a simple model that elegantly captures the essence of ad-
aptation: the requirement that an organism "conform" to the
environment in many different ways. (The organism must
resist the right parasites, match the right background color,
detoxify the right compounds, pursue the right prey, etc.) His
key insight was that the "statistical requirements of the sit-
uation" in which one complex system (the organism) must
conform to another (the environment) could be captured with
a simple geometric model in which an organism tries to si-
multaneously improve many characters by producing random
mutations in all phenotypic directions (see below). Using this
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quantitatively rather than forcing continuous variation into qualitative categories.
Incorporating Iltis’s (39) observations, we scored traits related to plant architec-
ture and scored ear traits on ears from equivalent morphological positions on each
plant.

Identifying Genomic Regions (QTL) for Plant
and Ear Architecture

We performed QTL mapping in two F2 populations, identifying QTL on all 10
chromosomes. We concluded that the genes involved in maize morphological
evolution are scattered throughout the genome (20). However, we also observed
five (or six) regions of the genome that have particularly strong effects on the trait
phenotypes (Figure 4). Thus, our analyses confirmed the prior observations that
the inheritance of the differences between maize and teosinte were governed by
either a few major genes (2) or a few blocks of multiple linked genes (53) plus a
larger number of small effect loci.

When we examined the distribution of QTL effects for specific traits, some
patterns were apparent (20). A region on chromosome arm 1L is most strongly
associated with the differences in plant architecture. A region on chromosome
arm 2S is most strongly associated with differences in ear rank. A region on chro-
mosome arm 4S largely controls the formation of the cupulate fruitcase. Regions
of large effect on chromosome arms 1S, 3L and 5S have more general effects on

Figure 4 Plot of the ten maize-teosinte chromosomes showing the estimated effects
of QTL summed over nine traits that measure plant and inflorescence architecture
(20). The height of the gray shaded areas indicates the relative QTL effect at different
positions along the chromosomes. Candidate genes and regions with large effects on
specific traits are indicated. Six regions of particularly large effect on chromosomes 1
to 5 are visible. Scale in centimorgans.

Figure 5 (A) Teosinte (Zea mays ssp. mexicana) plant and (B) its axillary branch
with terminal tassel and silks emerging from teosinte ears hidden within the leaf
sheaths. (C) Maize plant and (D) ear shoot. (E) tb1-ref mutant maize plant and (F)
axillary branches that have terminal male inflorescences and lack ears. Photo by John
Doebley.
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Figure 2 (A) A ‘Reconstructed’ ear of primitive maize (left). This small-eared form
of maize was bred by George Beadle by crossing teosinte with Argentine pop corn
and then selecting the smallest segregants (16). (B) Ear of pure teosinte (Zea mays
ssp. parviglumis) composed of eight cupulate fruitcases. (C) Ear of teosinte carrying
a segment of maize chromosome arm 4S including the maize allele of tga1. The
effects of the maize allele of tga1 include cupules that are less well-developed and
shallower so that the kernels are visible. Photo by John Doebley.
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The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations

and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit

is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary

forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues

if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed

large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-

effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment.

Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large

numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the

molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental

evolutionary questions, they are essentially misleading about many others.

KEY WORDS: Evolutionary genetics, geometric model, infinitesimal model, QTL, QTN.

Many lines of inquiry in evolutionary biology share the goal
of identifying the allelic variants that underlie phenotypic vari-
ation and divergence. In fields from evo-devo to population ge-
netics, the hope is that the identities of the functional variants
will reveal the position of nature in the parameter space de-
fined by the extremes of our models: additivity versus pervasive
epistasis, pleiotropy versus modularity, oligogenic versus poly-
genic adaptation, micro- versus macromutation, common versus
rare alleles, protein coding versus cis-regulatory, balancing se-
lection versus mutation-selection balance. If only we could put
our hands on the actual causal variants, the quantitative trait nu-
cleotides (QTNs), maybe we could put these tired old debates
to bed (Tanksley 1993; Orr 1999; Barton and Keightley 2002;
Phillips 2005; Mitchell-Olds et al. 2007; Stern and Orgogozo
2008). This is the QTN program, and its admirable commitment

to empiricism so dominates research in molecular evolutionary
genetics that its premises are rarely questioned. By broad con-
sensus, all we need to do to answer our questions is to identify
the alleles that affect phenotypes. At some point, the catalog
of QTNs will be sufficiently large that patterns and their inter-
pretations will be obvious to all. The major debate currently
seems to be over the question of whether we have already ar-
rived at that point or whether we need to collect more QTNs
(Pennisi 2008, 2009).

For the QTN program to succeed, the allelic variants it dis-
covers must be representative examples of the underlying pool
of QTNs. I argue that this condition is rarely met, and, perhaps,
cannot be met. Progress requires that we carefully distinguish be-
tween questions answerable by the QTN program and those that
demand alternative approaches.

1
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Statement of the Problem
In January 1848, James Marshall found gold flakes in the millrace
of John Sutter’s saw mill. Within months, news of the discovery
leaked and the rush was on. Thousands left home, rounding the
Cape, crossing the Isthmus, or joining the wagon trains headed
west. Soon the easy pickings were gone, and consortia of min-
ers banded together to blast more flakes from the hills. Extrac-
tion technologies proliferated: first rockers and long toms, then
gravel dredges, and finally hydraulic mining, which washed whole
mountains through giant sluices to recover dense gold flakes from
the riffles.

Modern day QTN prospecting is the Sierra Nevada of the
1850s. The shiny (Mendelian) nuggets are rapidly being collected,
and ever larger teams of researchers with ever more powerful
technologies are now probing whole genomes to find their quarry.
But visible flakes of placer gold represent a small fraction of
the global gold reserve; most gold is in microscopic particles
concealed in low-grade ore (Mudd 2007). These particles are
immune to mechanical separation. If the stuff of evolution is often
alleles of microscopic effect, large-effect nuggets can tell us little
about the material basis for evolution. All of the questions that
the QTN program promises to answer are confounded by a more
basic question: what is the phenotypic effect-size distribution of
evolutionarily relevant mutations?

Although our current catalog of QTNs has provided insights
into both the evolutionary forces and the functional mechanisms
by which alleles shape phenotypic variation and divergence (Stern
and Orgogozo 2009), it represents a biased sample of evolutionary
causes and molecular functions. The answers the catalog provides
may not be germane to many of the questions we asked in the first
place. More general answers about ultimate and proximal causes
of phenotypic variation and evolution may be resting undiscovered
in the piles of waste rock tailings recklessly strewn by our QTN-
mining machinery.

The problem of ascertainment bias is not a new one: it was a
focus of Lewontin’s 1974 book, The Genetic Basis of Evolutionary
Change. The problem, in its basic formulation, is what Lewon-
tin termed an epistemological paradox: “What we can measure
is by definition uninteresting and what we are interested in is by
definition unmeasurable” (p. 23). The difficulty through much of
the 20th century was that the genes underlying phenotypic vari-
ation and divergence were detectable only when they had such
dramatic effects as to behave as Mendelian genes, with genotypes
inferable from phenotypes. These genes were believed to be of
little consequence for evolution, according to Lewontin: “the sub-
stance of evolutionary change at the phenotypic level is precisely
in those characters for which individual gene substitutions make
only slight differences as compared with variation produced by
the genetic background and the environment.” This micromuta-

tionist perspective, with its dismissal of large-effect alleles, was
hardly unique to Lewontin (e.g., Charlesworth et al. 1982). It
was based on the preceding half century of evolutionary biology,
built on the synthesis forged between biometrical and Mendelian
genetics. The critical model underlying this synthesis is the in-
finitesimal, derived from Fisher’s polygenic model of inheritance
(Fisher 1918), a simple abstraction that attributes continuous vari-
ation to very large number of mutations of infinitesimal effect.
Although infinitesimal theory has always been technically wrong
(there are after all a finite number of nucleotides in a genome), its
simplicity facilitated the development of a vast and empirically
successful body of quantitative genetics theory (Crow 2008; Hill
2010). And although it was proposed for the sake of its mathemat-
ical properties, the infinitesimal model fit well with the genetic
interpretation of Fisher’s (1930) geometric model of adaptation,
which held that mutations that influence many traits are likely to
influence some for the worse, so that alleles of small effect are
most likely to be net beneficial (see Note 1 in Supporting informa-
tion). The synthesis, with its infinitesimal model of quantitative
genetics and its geometrical model of adaptation, had no room for
macromutationist theories that attributed evolution to the spon-
taneous appearance of mutants or “sports” (Charlesworth et al.
1982).

Cracks appeared in the micromutationist synthesis around
20 years ago (Orr and Coyne 1992). Systematic genome-wide
approaches to mapping phenotypically relevant alleles (Lander
and Botstein 1989) promised to reveal the quantitative trait loci
(QTLs), the elusive genes whose substitutions make slight dif-
ferences. Over the last two decades, geneticists have discovered
one large-effect QTLs after another (see Note 2 in Supporting
information), refuting the infinitesimal theory (Orr 1999, 2005a).
Gradually, the success of QTL mapping has led to a new consen-
sus, one that views alleles of detectably large effects as the norm
and not the exception (e.g., Farrall 2004; Bell 2009).

Why has the pendulum swung so far? Part of the answer lies
in the development of a theoretical model that seems to anticipate
and justify the importance of large-effect QTLs. The now-standard
history of adaptation genetics (Orr 2005a) begins with Fisher’s
geometric model, which, as noted above, predicts that most ben-
eficial mutations will be of small effect. Kimura (1983) built on
Fisher’s result, recognizing that small-effect mutations are at great
risk of being lost by genetic drift when rare, and consequently mu-
tations of intermediate effect are likely to predominate in adaptive
fixation (see Note 3 in Supporting information). Orr (1998a) ex-
tended Kimura’s result to derive the distribution of effect sizes for
a complete adaptive walk. The result is now the textbook model
for the genetics of adaptive fixation: the effect-size distribution of
adaptive substitutions is approximately exponential, with a few
large- and many small-effect mutations, the former typically sub-
stituting before the latter.
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a b s t r a c t

Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described
as the sum of a genetic and a non-genetic component, the first being distributed within families as a
normal random variable centred at the average of the parental genetic components, and with a variance
independent of the parental traits. Thus, the variance that segregates within families is not perturbed
by selection, and can be predicted from the variance components. This does not necessarily imply that
the trait distribution across the whole population should be Gaussian, and indeed selection or population
structuremay have a substantial effect on the overall trait distribution. One of ourmain aims is to identify
some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review
the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the
phenotypic level in terms of individual trait values and relationships between individuals, but including
different evolutionary processes: genetic drift, recombination, selection, mutation, population structure,
. . . .We give a range of examples of its application to evolutionary questions related to stabilising selection,
assortative mating, effective population size and response to selection, habitat preference and speciation.
Weprovide amathematical justification of themodel as the limit as the numberM of underlying loci tends
to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic
component of the trait is purely additive. We also show how the model generalises to include epistatic
effects. We prove in particular that, within each family, the genetic components of the individual trait
values in the current generation are indeed normally distributedwith a variance independent of ancestral
traits, up to an error of order 1/

p
M . Simulations suggest that in some cases the convergence may be as

fast as 1/M .
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The infinitesimal model is a simple and robust model for the
inheritance of quantitative traits, in which these are the sum of
a genetic and a non-genetic (environmental) component, and the
genetic component of offspring traits follows a normal distribution
around the average of the parents; this distribution has a variance
that is independent of the parental trait values, and, in a large
outcrossing population, the variance remains constant despite se-
lection. With inbreeding, the variance decreases in proportion to
relatedness. Of course, selection may cause the distribution across
the whole population to deviate from normality. The crucial point
is that under the infinitesimal model, the distribution of genetic
components within families remains normal, with variance that
evolves in a way that is entirely determined by relatedness.

* Corresponding author.
E-mail addresses: nick.barton@ist-austria.ac.at (N.H. Barton),

amandine.veber@cmap.polytechnique.fr (A. Véber).

This model has its roots in the observations of Galton (1877,
1885, 1889), and their analysis by Pearson (1896, 1897). Fisher
(1918) showed that trait values and their (co)variances can be bro-
ken down into components, and that the phenotypic observation of
constant within-family variance is consistent with a large number
of Mendelian factors, with additive effects. The limiting infinites-
imal model can be extended to include all the main evolutionary
processes: recombination, mutation, random sampling drift, mi-
gration and selection. The model is hardly new, yet there seems
to be no agreement onwhat precisely is meant by the infinitesimal
model, nor on the conditions under which it is expected to apply.
Moreover, although it has long been central to practical breeding,
where it forms the genetic basis for the animalmodel, it is relatively
little used in evolutionary modelling (see Kruuk, 2004; Hill and
Kirkpatrick, 2010 for a review).

This paper provides a summary of the model, together with
a rigorous derivation, including control over its accuracy as an
approximation. We show that its predictions about within-family
variance can be accurate even with epistasis. The reason can be

http://dx.doi.org/10.1016/j.tpb.2017.06.001
0040-5809/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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A central goal of genetics is to understand the links between genetic variation and disease. Intui-
tively, one might expect disease-causing variants to cluster into key pathways that drive disease
etiology. But for complex traits, association signals tend to be spread across most of the
genome—including near many genes without an obvious connection to disease. We propose
that gene regulatory networks are sufficiently interconnected such that all genes expressed in dis-
ease-relevant cells are liable to affect the functions of core disease-related genes and that most
heritability can be explained by effects on genes outside core pathways.We refer to this hypothesis
as an ‘‘omnigenic’’ model.

The longest-standing question in genetics is to understand how
genetic variation contributes to phenotypic variation. In the early
1900s, there was fierce debate between the Mendelians—who
were inspired by Mendel’s work on pea genetics and focused
on discrete, monogenic phenotypes—and the biometricians,
who were interested in the inheritance of continuous traits
such as height. The biometricians believed that Mendelian ge-
netics could not explain the continuous distribution of variation
observed for many traits in humans and other species.
This debate was resolved in a seminal 1918 paper by R.A.

Fisher, who showed that, if many genes affect a trait, then the
random sampling of alleles at each gene produces a
continuous, normally distributed phenotype in the population
(Fisher, 1918). As the number of genes grows very large, the
contribution of each gene becomes correspondingly smaller,
leading in the limit to Fisher’s famous ‘‘infinitesimal model’’
(Barton et al., 2016).
Despite the success of the infinitesimal model in describing

inheritance patterns, especially in plant and animal breeding,
it was unclear throughout the 20th century how many genes
would actually be important for driving complex traits. Indeed,
human geneticists expected that even complex traits would be
driven by a handful of moderate-effect loci—thus giving rise to
large numbers of mapping studies that were, in retrospect,
greatly underpowered. For example, an elegant 1999 analysis
of allele sharing in autistic siblings concluded from the lack of
significant hits that there must be ‘‘a large number of loci
(perhaps R15).’’ This prediction was strikingly high at the
time but seems quaintly low now (Risch et al., 1999; Weiner
et al., 2016).
Since around 2006, the advent of genome-wide association

studies, and more recently exome sequencing, has provided
the first detailed understanding of the genetic basis of complex
traits. One of the early surprises of the GWAS era was that, for

typical traits, even the most important loci in the genome have
small effect sizes and that, together, the significant hits only
explain a modest fraction of the predicted genetic variance.
This has been referred to as the mystery of the ‘‘missing herita-
bility’’ (Manolio et al., 2009). The mystery has since been largely
resolved by analyses showing that common single-nucleotide
polymorphisms (SNPs) with effect sizes well below genome-
wide statistical significance account for most of the ‘‘missing
heritability’’ of many traits (Yang et al., 2010; Shi et al., 2016).
Rare variants with larger effect sizes also contribute genetic vari-
ance (Marouli et al., 2017), especially for diseases with major
fitness consequences (Simons et al., 2014) such as autism and
schizophrenia (De Rubeis et al., 2014; Fromer et al., 2014; Purcell
et al., 2014).
A second surprise was that, in contrast to Mendelian dis-

eases—which are largely caused by protein-coding changes
(Botstein and Risch, 2003)—complex traits are mainly driven
by noncoding variants that presumably affect gene regulation
(Pickrell, 2014; Welter et al., 2014; Li et al., 2016). Indeed,
many studies have shown that significant variants are highly
enriched in regions of active chromatin such as promoters and
enhancers in relevant cell types. For example, risk variants for
autoimmune diseases show particular enrichment in active chro-
matin regions of immune cells (Maurano et al.; 2012; Farh et al.,
2015; Kundaje et al., 2015).
These observations are generally interpreted in a paradigm in

which complex disease is driven by an accumulation of weak
effects on the key genes and regulatory pathways that drive
disease risk (Furlong, 2013; Chakravarti and Turner, 2016).
This model has motivated many studies that aim to dissect
the functional impacts of individual disease-associated variants
(Smemo et al., 2014; Sekar et al., 2016) or to aggregate hits to
identify key disease pathways and processes (Califano et al.,
2012; Jostins et al., 2012; Wood et al., 2014; Krumm et al.,
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effect is absorbed by the initial average effect of the loci, and alleles
may not reverse their sign, but this can be seen as a reduction in n0.
When drift dominates, the ultimate response depends only on

initial variance components. When selection dominates, the ef-
fect of epistasis on the ultimate response depends on reversals
in selection on individual alleles, so that a different genotype
is reached; this depends on the ratio of SDs of epistatic versus
main effects, multiplied by the square root of the number of
interacting alleles that sweep from low to high frequency
(E = ffiffiffiffiffi

n0
p

σe=σα), as we showed above. The transition between
the two regimes depends only on the selection strength each
locus experiences (Fig. 3); the trait can be under high selection
strength, but, as long as it is highly polygenic, the prediction
derived for the drift-dominated regime will hold (Fig. 3) be-
cause, for the same initial genetic variance, the selection co-
efficients scale as n−1=2 with the number of loci. In the limit of
infinite numbers of genes, this prediction would hold regardless
of the selection gradient on the trait. In the selection-domi-
nated regime, the distribution of allele frequencies is mostly
irrelevant because the ultimate response depends on alleles
that are initially vanishingly rare (or absent if we allow muta-
tion). The key parameter is E = ffiffiffiffiffi

n0
p

σe=σα, which is not con-
strained by the initial variance components: If alleles are at
extreme frequency, the epistatic variance must be small, even if
E is large. However, we can relate this parameter to variance
components in the F2 population formed by crossing the an-
cestral with the derived population (see Measuring Strength of
Interactions from F2 Crosses and Fig. S2). This implies that the
initial epistatic variance does not predict the long-term response of
the population, because the population may contain strong inter-
actions (large E) that are not manifested as epistatic variance
(which depends on allele frequencies) but can contribute to the
long-term response as allele frequencies reach appreciable levels.

Discussion
The role of epistasis in evolution has long been controversial.
Wright (1) argued that epistasis would cause populations to
become trapped at local “adaptive peaks” and proposed that a
“shifting balance” between selection and random drift could al-
low them to explore alternative peaks, so as to move toward the
global optimum. This theory motivated much work on the
structure of natural populations, yet it remains unclear whether
adaptation is significantly slowed by trapping on local peaks (1,
22). Mayr (23) criticized the supposed neglect of epistasis by
“bean-bag genetics,” provoking a robust defense by Haldane
(24). More recently, it has been proposed that epistatic variance
can be “converted” into additive variance following a bottleneck,
aiding adaptation (25). The failure of large genome-wide asso-
ciation studies to assign much heritable variance to specific loci
(the so-called “missing heritability”) has been attributed to
epistasis (26, 27), although this explanation is unnecessary (28).
Overall, the practical success of the additive model in quantita-
tive genetics appears hard to reconcile with the strong molecular
interactions between genes.
We investigate how epistasis affects the response to selection,

by asking a simple and clearly defined question: By how much
does epistasis influence the ultimate change in the mean of a se-
lected trait? We compare the effects of directional selection on two
populations that initially have the same genetic variance for a trait;
in one, inheritance is strictly additive, whereas, in the other, there
can be strong gene interactions. We find simple results in the two
extreme cases, where either drift or selection dominate.
In the first case, where drift is stronger than selection on in-

dividual alleles, the outcome can be predicted from the initial
variance components. This seems remarkable but can be un-
derstood as a perturbation to neutrality: When selection is spread
over very many loci, its effect on any one locus is weak relative to
drift, and so the variance components are hardly perturbed by
selection. This is an extension of the infinitesimal model to non-
additive inheritance (29). For haploids, the total selection response
is proportional to the initial genotypic variance (including both

additive and nonadditive components). For diploids, kth-order
components of variance have effect multiplied by 2k. Nevertheless,
it is extremely difficult to find plausible models in which such
higher-order variance components are significant (10). One way to
see this is to imagine a population in which all additive effects are
zero—as would be the case at an equilibrium under balancing se-
lection. However, any change in allele frequencies will necessarily
generate nonzero additive effects, and, consequently, substantial
additive variance. Higher-order epistatic variance is also likely to
be small if alleles are at extreme frequencies: the kth-order epis-
tasis is proportional to the product of hpqi across k loci, and so
cannot be large (10).
In contrast, when selection is strong relative to drift ðNs " 1Þ,

the population will fix at an adaptive peak. This requires strong
selection on each allele (Ns " 1), but also recurrent mutation, so
any allele that is favored will eventually succeed. Thus, the issue
is primarily about the genotype−phenotype map rather than any
population genetic process. We show that, unless epistasis is
systematically biased, the ultimate response is increased, on av-
erage, only if the fittest peak is changed, because epistasis
changes some alleles from being favored to being deleterious.
The expected response can be predicted by a simple argument,
which assumes that the net effect of the changing background
is a normally distributed perturbation, and that the chance
that selection on an allele changes sign is simply the chance that
this random epistatic perturbation exceeds the main effect of
the allele.
When drift dominates, our conclusions follow simply from the

variance components, without further assumptions. When se-
lection dominates, we assume that epistasis is not systematically
biased toward (or against) interactions between favorable alleles.
If a systematic bias is allowed, then epistasis can have an arbi-
trarily large effect. To see this, imagine a trait that is some
function g½z% of an additive trait, z. If g½z% curves upward, then the
selection response will accelerate, and can become much larger
than the corresponding additive model with the same initial
additive variance. Indeed, if we are allowed to assign trait values
to genotypes arbitrarily, we can construct paths that follow any
pattern of change through time. Our conclusions about the ul-
timate effects of selection depend on the assumption that epis-
tasis adds a random perturbation, without any definite bias.
Empirically, this seems to be the consensus: Epistasis is pervasive
between genetic loci but is generally nondirectional in the sense
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Fig. 3. The transition from the drift-dominated to the selection-dominated
regimes. Stochastic simulations with increasing scaled selection (Neβ) show-
ing the total trait increase in units of initial SD of trait value for n = 50
(squares) and n =1,000 (circles) loci. Dotted line corresponds to the drift-
dominated prediction (R= βNeV0

G), and dashed lines correspond to the de-
terministic limit taken from numerical analysis, for an epistatic architecture
(black) and an additive architecture (gray) of the same initial genetic variance.
Initial allele frequencies were sampled from a beta distribution with mean 1=4
and variance 1=16, σα = 1=10, and σe = 0.5. Simulations were performed either
with β= 10−2 or β= 10−5 and varying Ne to yield the reported product Neβ.
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Le retour du modèle infinitésimal 
• Signatures génomiques des différents régimes 
 

dropped to a fixed value of fw = 0.05. In S1 Appendix, Section G, we complement these results
and study the changes in the adaptive architecture when fw is varied.

Fig 4 displays the main result of this section. It shows the marginal distributions of all loci,
ordered according to their allele frequency at the time of observation (major locus, 1st, 2nd,
3rd minor locus, etc.) for traits with L = 2, 10, 50, and 100 loci. Panels in the same row corre-
spond to equal background mutation rates Θbg = (L − 1)Θl, but note that the locus mutation
rates Θl are not equal. The figure reveals a striking level of uniformity of adaptive architectures
with the same Θbg, but vastly different number of loci. For Θbg 1 (the first three rows), the
marginal distributions for loci of the same order (same color in the Figure) across traits with
different L is almost invariant. For large Θbg, they converge for sufficiently large L (e.g. for

Fig 4. Genomic architecture of polygenic adaptation. We distinguish three patterns of architectures with increasing
genomic background mutation rate Θbg: complete sweeps, for Θbg≲ 0.1, heterogeneous partial sweeps at several loci
for 0.1< Θbg< 100, and polygenic frequency shifts for Θbg≳ 100. The plots show the marginal distributions of all loci,
ordered according to their allele frequency, i.e. the major locus in red and all following (first, second, third, etc.
minors) in blue to green to yellow. Lines in respective colors show analytical predictions, see S1 Appendix, Section E.
Simulations were stopped once the populations have adapted to 95% of the maximum mean fitness in each of 10 000
replicates, resulting in an the upper bound for the major locus distribution at, p1 = 0.95. Simulations for sb = −sd = 0.1.
Note the different scaling of the y-axis (density, normalized to 1 per locus) for different mutation rates.

https://doi.org/10.1371/journal.pgen.1008035.g004
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Limites du modèle infinitésimal 
• Conditions où l’épistasie affecte fortement l’évolution de 

VA, donc l’évolution à long terme 
•  Sélection forte 
•  Epistasie directionnelle 

• Conséquences 
•  Augmenter ou diminuer les prédictions à long terme 
•  Conduire à plusieurs chemins et équilibres alternatifs 
•  Conduite à des états polymorphes 

(ex: Carter et al. 2005, Hansen 2013, Le Rouzic and Alvarez-Castro 2016,…)  



Limites du modèle infinitésimal 
•  Liaison génétique et épistasie 

•  Deux régimes en fonction recombinaison / épistasie 

theless recombination is very important because it continuously
introduces new genotypes leading to an increase in fitness attained
by the population at long times. In the limit of high recombination
genotypes are short-lived and essentially unique, resulting in a
‘‘pointillist’’ color pattern in Fig. 1B. Each allelic variant is therefore
selected on the basis of its effect on fitness, averaged over many
possible genetic backgrounds. The time scale on which allele
frequencies change is given by the inverse of these marginal fitness
effects. The term ‘‘linkage equilibrium’’ in QLE refers to the
negligible correlations between loci, which are constantly reshuf-
fled by recombination.

As we show below, the transition between the two regimes
sharpens as the number of segregating loci L increases. The
sharpening of the transition is related to the different scaling of the
time scale of selection in the two regimes. For large L, the marginal
fitness effects of individual loci become small compared with fitness
differentials among individuals (assuming they are all of similar size,
this ratio decreases as !1/"L). Hence, the dynamics in the QLE
regime slows down compared with the CC regime as L increases.
The CC and QLE regimes correspond to different regions of the
parameters space spanned by the relative strength of epistasis and
the ratio of outcrossing or recombination rate to the strength of
selection, as sketched in Fig. 1C. The QLE dynamics was first
described by Kimura (21) in the limit of weak selection/fast recom-
bination for a pair of biallelic loci and subsequently generalized to

multiloci systems (22, 23). The possibility of a collective behavior
involving linkage disequilibrium among many loci and selection
effectively acting on the whole chromosome as a unit has been
pointed out before in the context of overdominance by Franklin and
Lewontin (24) in the strong selection limit. However, these studies
of the two different limits do not reveal the breakdown of QLE and
the transition to CC as the generic behavior of multilocus epistatic
systems.

To underscore the general nature of the results, have studied 2
different models of epistasis. The first model follows the common
treatment of epistasis in quantitative traits, which assumes that the
epistatic contribution to fitness is disrupted when the parental genes
are mixed in sexual reproduction (25, 26). This assumption becomes
exact when the epistatic component of fitness of a specific genotype
is a random number (which depends on the genotype, but is fixed
in time) and we call this model the random epistasis (RE) model.
Within the RE model, any change in the genotype randomizes the
epistatic component of fitness so that the latter is not heritable when
nonidentical parents mate. It is, however, faithfully passed on to the
offspring in asexual reproduction. For the RE model, genomes are
propagated asexually with probability 1 # r and with probability r
are a product of mating where all genes are reassorted, as would be
exactly correct if all genes were on different chromosomes. This
model of facultative mating approximates reproductive strategies
common in fungi (e.g., yeast) or nematodes and plants. As a more
realistic alternative, we also study a model with only pairwise
interactions between loci (27). This pairwise epistasis (PE) model
allows epistatic contribution to be partly heritable, because inter-
acting pairs have a chance to be inherited together (28). For the PE
model, we assume that all genes are arranged on a single chromo-
some with a uniform cross-over rate !, which allows us to explore
haplotype block formation and implications for recombination rate
evolution.

The strength of selection is determined by the variance "2 of the
distribution of fitness in the population. Within our models, the
fitness F(g) of a genotype g is the sum of an additive component A(g)
representing independent contributions of alleles and an epistatic
part E(g). For the RE model, the latter is a random number drawn
from Gaussian distribution, whereas for the PE model it is a sum
of pairwise interactions with random coefficients fij. The variances
VA and VI of the distributions of A(g) and E(g) add up to "2 and their
relative magnitude determines the importance of additive effects
compared with epistasis. The two different models and their
parameters are given explicitly in Methods. For the sake of simplic-
ity, we assume haploid genomes. Random and pairwise epistasis
represent 2 opposite extremes in the complexity of epistasis.
Although the pairwise model is more realistic, the generic behavior
is most clearly demonstrated using the RE model with random gene
reassortment and facultative mating.

Results
Two Regimes of Selection Dynamics. We performed extensive com-
puter simulation of our two models for different relative strength of
epistasis, L $25–200 loci and populations sizes between N $500
and 106. We initialize simulations in a genetically diverse state as
would result from multiple crossings of 2 diverged strains and
examine the evolution under selection and recombination. The two
regimes differ strongly in the amount of linkage disequilibrium
(LD) (see Methods) build up by selection. Fig. 2A shows the average
LD per locus pair for the RE model as a function of the outcrossing
rate r. For r %rc, the LD per locus pair is of order 1 and independent
of L or N, indicating genome-wide LD. LD builds up despite a large
number of different genotypes in the population interbreeding
constantly. For r & rc, the LD is much smaller, with the observed
value determined by the sampling noise due to the finite population
size (see Fig. 2A Inset and Fig. S1). Similar behavior occurs in the
PE model, as shown in Fig. 2B. Above a critical recombination rate
!c, the observed linkage disequilibrium is time independent and
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Fig. 1. The two regimes of sexual reproduction. (A and B) The simulated time
course of the genotype distribution in a population of 500 individuals with
epistatic fitness variance VI$"2 $0.005 and outcrossing rate r $0.1 (A) and
r $ 0.4 (B; RE model defined below). Like genotypes are assigned the same
color and stacked on top of each other. (C Insets) Sketches illustrating the
population dynamics in the 2 cases. At low outcrossing rates, fit genotypes can
proliferate. The genotype distribution rapidly coarsens and clones form (hor-
izontal stripes in A). With frequent outcrossing, genes are rapidly reshuffled
and genotypes do not persist over many generations, resulting in the point-
illist pattern in B. Fixation happens at later time and is not shown. (C) The two
regimes are separated by a sharp boundary set by the strength of epistasis. For
r %rc, the population dynamics is described by clonal competition (CC); for r &
rc by quasi linkage equilibrium (QLE).
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Selection on Genetic Modules. So far, we assumed that each pair of
loci is equally likely to interact epistatically, regardless of their
physical distance on the chromosome. However, there is evidence
that the order of genes along the chromosome is far from random
and that related genes tend to cluster (16, 17). To emulate such a
situation we use the PE model and construct an interaction matrix
fij where arbitrary pairs interact with a small probability while
clusters of neighboring genes interact with a high probability (see
Methods). For such a hierarchical epistatic structure, we observe, as
a function of increasing cross-over rate !, a sequence of 2 transitions
that define, sandwiched between CC and QLE, an intermediate
Modular Selection (MS) regime, where the genome-wide LD
characteristic of the CC regime has broken down to a set of modular
blocks that are in quasi linkage equilibrium with each other. The
resulting linkage disequilibrium patterns are shown in Fig. 5. The
observed block structure of LD in the MS regime resembles
haplotype blocks (18, 19), which are normally associated with
regions of little recombination flanked by recombination hotspots.
Indeed, the cumulative recombination history of the chromosomes
in the population show a very heterogenous recombination distri-
bution, as shown in Fig. 5D. However, here the origin of these blocks
is not intrinsically low recombination (i.e., physical linkage) but the
collective effect of epistatic selection: The surviving individuals
have recombined more often in regions of low epistasis than in
regions of high epistasis, even though the attempted cross-overs are
uniformly distributed along the chromosome. Clusters of epistatic
interaction can therefore exert selective pressure to lower re-
combination within the cluster. This lack of recombinant sur-
vival has been observed in experiments with mice (36), where
inbreeding results in strong selective pressure on localized

clusters of genes generating blocks with high LD and reduced
effective recombination.

Conclusion
We have shown that the competition of epistatic selection and
recombination can give rise to distinct regimes of population
dynamics, separated by a transition that becomes sharp for large
number of interacting loci. The QLE and CC regimes are realiza-
tions of the opposing views on evolution of R. A. Fisher and S.
Wright. For r ! rc alleles are selected for the their additive
contributions while selection acts on whole genotypes for r " rc. The
fundamental differences between these two regimes show up most
clearly in the different scaling properties of the total LD and the
decay time of genetic diversity. In the low recombination regime,
LD is produced independent of physical linkage by the collective
effect of many interactions. In the high recombination regime, LD
can be attributed to specific interactions between pairs of loci and
its value, determined by the ratio of the interaction strength and the
rate of recombination between the loci, is small. Our results not only
apply to the transition between genotype and allele selection, but
also to localized clusters of interacting genes on the chromosome.
Whenever the epistatic fitness difference between different allelic
compositions of a cluster exceeds the recombination rate of the
cluster, the fittest will amplify exponentially. Because such clusters
are often small (36) (one to a few Mb) their recombination rates are
low (in the centimorgan range)—hence fitness differentials around
1% can suffice to establish CC dynamics. Selective pressure to
reduce recombination load, i.e., the fitness loss through recombi-
nation, will therefore favor the evolution of clusters of interacting
genes and might be an important driving force for the evolution of
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Fig. 5. Clonal competition, modular selection and quasi linkage equilibrium. (A–C) LD, measured as D#ij between 2 loci i and j, is shown above the diagonal for
a linear chromosome of length L $ 100 at 3 different cross-over rates !. The interaction matrix fij is shown below the diagonal. At low ! (A), the sparse long range
interactions suffice to produce genome wide LD. At intermediate ! (B), distant parts of the genome are decoupled, but the more strongly interacting clusters
still show high LD, which vanishes at even higher recombination rates (C). (D) (Upper) The distribution of historic cross-overs. (Lower) The relative fitness of
recombinants as a function of the cross-over location. LD was measured when allelic entropy was at 90% of the initial value, "2 $ VI $ 0.005 and N $ 106.
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Selection on Genetic Modules. So far, we assumed that each pair of
loci is equally likely to interact epistatically, regardless of their
physical distance on the chromosome. However, there is evidence
that the order of genes along the chromosome is far from random
and that related genes tend to cluster (16, 17). To emulate such a
situation we use the PE model and construct an interaction matrix
fij where arbitrary pairs interact with a small probability while
clusters of neighboring genes interact with a high probability (see
Methods). For such a hierarchical epistatic structure, we observe, as
a function of increasing cross-over rate !, a sequence of 2 transitions
that define, sandwiched between CC and QLE, an intermediate
Modular Selection (MS) regime, where the genome-wide LD
characteristic of the CC regime has broken down to a set of modular
blocks that are in quasi linkage equilibrium with each other. The
resulting linkage disequilibrium patterns are shown in Fig. 5. The
observed block structure of LD in the MS regime resembles
haplotype blocks (18, 19), which are normally associated with
regions of little recombination flanked by recombination hotspots.
Indeed, the cumulative recombination history of the chromosomes
in the population show a very heterogenous recombination distri-
bution, as shown in Fig. 5D. However, here the origin of these blocks
is not intrinsically low recombination (i.e., physical linkage) but the
collective effect of epistatic selection: The surviving individuals
have recombined more often in regions of low epistasis than in
regions of high epistasis, even though the attempted cross-overs are
uniformly distributed along the chromosome. Clusters of epistatic
interaction can therefore exert selective pressure to lower re-
combination within the cluster. This lack of recombinant sur-
vival has been observed in experiments with mice (36), where
inbreeding results in strong selective pressure on localized

clusters of genes generating blocks with high LD and reduced
effective recombination.

Conclusion
We have shown that the competition of epistatic selection and
recombination can give rise to distinct regimes of population
dynamics, separated by a transition that becomes sharp for large
number of interacting loci. The QLE and CC regimes are realiza-
tions of the opposing views on evolution of R. A. Fisher and S.
Wright. For r ! rc alleles are selected for the their additive
contributions while selection acts on whole genotypes for r " rc. The
fundamental differences between these two regimes show up most
clearly in the different scaling properties of the total LD and the
decay time of genetic diversity. In the low recombination regime,
LD is produced independent of physical linkage by the collective
effect of many interactions. In the high recombination regime, LD
can be attributed to specific interactions between pairs of loci and
its value, determined by the ratio of the interaction strength and the
rate of recombination between the loci, is small. Our results not only
apply to the transition between genotype and allele selection, but
also to localized clusters of interacting genes on the chromosome.
Whenever the epistatic fitness difference between different allelic
compositions of a cluster exceeds the recombination rate of the
cluster, the fittest will amplify exponentially. Because such clusters
are often small (36) (one to a few Mb) their recombination rates are
low (in the centimorgan range)—hence fitness differentials around
1% can suffice to establish CC dynamics. Selective pressure to
reduce recombination load, i.e., the fitness loss through recombi-
nation, will therefore favor the evolution of clusters of interacting
genes and might be an important driving force for the evolution of
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Fig. 5. Clonal competition, modular selection and quasi linkage equilibrium. (A–C) LD, measured as D#ij between 2 loci i and j, is shown above the diagonal for
a linear chromosome of length L $ 100 at 3 different cross-over rates !. The interaction matrix fij is shown below the diagonal. At low ! (A), the sparse long range
interactions suffice to produce genome wide LD. At intermediate ! (B), distant parts of the genome are decoupled, but the more strongly interacting clusters
still show high LD, which vanishes at even higher recombination rates (C). (D) (Upper) The distribution of historic cross-overs. (Lower) The relative fitness of
recombinants as a function of the cross-over location. LD was measured when allelic entropy was at 90% of the initial value, "2 $ VI $ 0.005 and N $ 106.
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Conclusions 
• Différentes utilités et limites en fonction du contexte (ex: 

prédiction d’un phénotype et prédiction de la dynamique de 
l’adaptation) 

• Développements théoriques GQ évolutive 
• Que rechercher dans les génomes? 
• Plus de biologie: 

•  Développement à construction du phénotype 
•  Contexte écologique à sélection plus explicite 


