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PREFACE

The application of genetical prineiples to the study of human metrical characters, such as stature,
was first attempted by Galton who, in 1887, used a method of correlation for measuring likeness
between relatives. The theoretical basis of the results remained obscure until Mendelian prin-
ciples of inheritance were applied. Karl Pearson’s first attempt, in 1904, to account for the
observed correlation valuesin this way was not satisfactory, but he succeeded in explaining the
results in 1909 after the idea of random mating had been introduced into human genetics. It
was not until 1918, however, that the matter was properly cleared up by Fisher’s classical study,
published in the Proceedings of the Royal Society of Edinburgh. Many aspects of the subject were
dealt with in this paper, such as the effects of dominance and assortative mating on the correla-
tion values, In some sections the exposition is very difficult to follow, The value of Fisher’s
contribution to the subject, however, is so great that Professor Moran and Professor Smith have
thought it worth while to discuss his text in detail and criticize it where they think necessary.
For this purpose the reprinting of the original paper is necessary and the running commentary
provided should prove of great value both to students of geneties and of statistics.

L.S. PENROSE



INTRODUCTION

Sir Ronald Fisher’s 1918 paper on the correlations between relatives is one of the classical papers
of scientific literature. A few papers had previously appeared giving the expected values of the
correlations on very simple Mendelian assumptions. Fisher succeeded in dealing with all the
more obvious complications such as complete or partial recessivity, multiple allelism, epistacy,
linkage, and assortative mating, and indeed with combinations of these, in one single paper.
Since these complications are known or virtually certain to occur in real examples, this was a
most important and necessary advance. Furthermore, this paper was published when Fisher
was still only 28 years of age. The treatment suffers from a few minor defects. The model for
assortative mating is rather a special one, though very ingenious; the argument dealing with
linked genes is incomplete; and there is no mention of sex-linkage. But the first two of these
defects are not easy to repair, and there has been no appreciable advance on Fisher’s treatment
of these points in the 47 years since his paper appeared.

It is also of interest that we can see in this paper the beginning of some of Fisher’s most im-
portant statistical ideas. Thus he sets out the idea of partitioning variance into components.
This presumably led to the Analysis of Variance. Fisher uses in this paper a technique which is
very closely related to the analysis of variance applied to linear regression.

We are very much indebted to the Royal Society of Edinburgh and to Hisher’s executor the
Public Trustee of South Australia for permission to reproduce his original paper, and to Pro-
fessor L. 8. Penrose for his encouragement. The text of Fisher’s paper has here been set in small
type, enclosed in double quotations marks. (Some small changes have been made in the mathe-
matical typography, in order to make it more consistent with the usual present-day practice used
in the commentary. But there has been no alteration in the substance.} The commentary has been
printed in larger type.

We hope that we have everywhere interpreted Fisher’s ideas correctly and will succeed in

making the paper more easy to follow.
P.A P.MORAN

C.A.B.SMITH
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* Beveral attempts have already been made to interpret the well-established results of biometry in accordance
with the Mendelian scherme of inheritance. It is here attempted to ascertain the biometrical properties of a
population of a more general type than has hitherto been examined, inheritance in which follows this scheme,
It is hoped that in this way it will be possible to make & more exact analysis of the causes of human variability.
The great body of available statistics show us that the deviations of a human measurement from its mean
follow very closely the Normal Law of Errors, and, therefore, that the variability may be uniformly measured
by the standard deviation corresponding to the square root of the mean square error. When there are two
independent causes of variability capable of producing in an otherwise uniform population distributions with
standard deviations o, and ¢,, it is found that the distribution, when both causes act together, has a standard

deviation /(¢4 0%).”
This assumes that the causes act additively and not, for example, multiplicatively.

“TIt is therefore desirable in analysing the causes of variability to deal with the square of the standard
deviation as the measure of variability. We shall term this quantity the Variance of the normal population to
which it refers, and we may now ascribe to the constituent causes fractions or percentages of the total variance

I M&S



4 ' COMMENTARY ON FISHER

which they together produce. It is desirable on the one hand that the elementary ideas at the basis of the
caleulus of correlations should be clearly understood, and easily expressed in ordinary language, and on the
other that loose phrages about the ¢ percentage of causation’, which obscure the essential distinction between
the individual and the population, should be carefully avmded

“ Speaking always of normal populations, when the cosfficient of eorrelation between father and son, in
stature let us say, s », it follows that for the group of sons of fathers of any given height the variance is a
fraction, 1 — 7%, of the variance of sons in. general. Thus if the correlation is 0-5, we have accounted by reference
to the height of the father for one quarter of the variance of the sons.”

This does not mean that one quarter of the variance is due to the direct genetic link between
father and son. Some of the correlation may arise indirectly because of a resemblance between
father and mother, and there is a direct genetic link between mother and son.

* For the remaining three quarters we must aceount by some other cause. If the two parents are independent,
-a second quarter may be ascribed to the mother. If father and mother, as usually happens, are positively
correlated, a less amount must be added to obtain the joint contribution of the two parents, since some of the
mother’s contribution will in this case have been already included with the father’s. In a similar way each of
the ancestors makes an independent contribution, but the total amount of variance to be ascribed to the
measurements of ancestors, including parents, cannot greatly exceed one half of the total. We mav know this
by considering the difference between brothers of the same fraternity: of these the whole ancestry is identical,
so that we may expect them to resemble one another rather more than persons whose ancestry, identical in
respect of height, consists of different persons. For stature the coefficient of correlation between brothers is
about 0-54, which we may interpret* by saying that 54 per cent of their variance is accounted for by ancestry
alone, and that 48 per cent must have some other explanation.”

Figher is using ‘accounted’ for in the technical sense that RB* = 0-54 is the multiple correlation
of the meagured value on the values of all ancestors. Fisher will show later that most of the
remaining variability is also due to the parents, being caused by their heterozygosity. This
does not contribute to the regression of child on parent, and thus, in the sense of the
theory of regression, this part of the child’s variability is not ‘accounted for’ by the parents’
variability.

Suppose that xis a blologlcal measurement on a son obtained by choosing a family at random
out of a large population of families and choosing a son at random out of this family. Let = be
measured from its mean and have variance o2 If X is the measurement on another son chosen
from the same family the expected value of (z — X)? will be 2V, where ¥V is the variance of a son
around the family mean. This mean value of {(z — X)? is the mean over all families.

On the other hand, if « and X are the measurements on two brothers in the same family the
mean value of (x — X)? taken over all families must be 26%(1 —r), where r is the correlation between
brothers. Thus 2V = 20%1—~7), and V/jo? = 1 -7,

Suppose now that x and X are measurements on two parents, and z on their offspring. Then the
proportion of the variance of z accounted for by the two parents is the multiple correlation of z

* The correlation is determined from the measurements of » individuals, @, z,, ..., 2,, and of their brothers,
Yis Yoo -+ 5 Y3 106 US sUppO=e that each pair of brothers is a random sample of two from an infinite fraternity, that
is to say from all the sons which a pair of parents might conceivably have produced, and that the variance of
each such fraternity is V, while that of the sons in general is . Then the mean valuse of (x — y)? will be 2V, since
each brother contributes the variance ¥. But expanding the expression, we find the mean value of both x* and
y? is o2, while that of zy is ro?, where » is the fraternal correlation. Hence 2V = 20%(1 —7), or Vjo?=1—».
Taking the values 0-5066 and 0-2804 for the parental and marital correlations, we find that the heights of the
parents alone account for 40-10 per cent of the variance of the children, whereas the fotal effect of ancestry,
deduced from the fraternal correlation, is 54-33 per cent. [All footnotes are from the original paper by Fisher.]
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with 2 and X, i.e. in this case the correlation of z with £+ X. The variances of z, X, and z are ¢?
each and the variance of x + X is 20%(1 + r,,), where r,, is the correlation between z and X, i.e. the
‘marital’ correlation. The covariance of z with (z + X) is the mean value of z(x + X) which equals
20, where r,, is the correlation between a son and a parent. The multiple correlation is therefore
75(1+7,)"" and in the particular case considered this is

0-5066 (1-2804)~1 = 0-39586,

which differs slightly from Fisher’s value 0-4010. What Fisher calls the ‘total effect of ancestry’
is given by the observed fraternal correlation, which is 0-5433, because this is the square of the
multiple correlation coefficient with all the ancestors and is therefore the fractional reduction in
variance when all the ancestral values are held fixed. The standard errors of these estimates are
not given,

¢ It is not sufficient to ascribe this last residue to the effects of environment., Numerous investigations by
Galton and Pearson have shown that all measurable environment has much less effect on such measurements
ag stature. Further, the facts collected by Galton respecting identical twins show that in this case, where the
essential nature is the same, the variance is far less. The simplest hypothesis, and the one which we shall
examine, is that such features as stature are determined by a large number of Mendelian factors, and that the
large variance among children of the same parents is due to the segregation of those factors in respect to which
the parents are heterozygous. Upon this hypothesis we will attempt to determine how much more of the
variance, in different measurable features, beyond that which is indicated by the fraternal correlation, is due
to innate and heritable factors.

“In 1903 Karl Pearson devoted to a first examination of this hypothesis the twelfth of his Mathematical
Contributions to the Theory of Evolution (‘ On & Generalised Theory of Alternative Inheritance, with special
reference to Mendel's Laws,” Phil. Trans., vol. coiir, A, pp. 53-87. The subject had been previously opened by
Udny Yule, New Phytologist, vol. 1}, For a population of » equally important Mendelian pairs, the dominant
end recessive phases being present in equal numbers, and the different factors combining their effects by
simple addition, he found that the correlation coefficients worked out uniformly too low. The parental corre-
lations were } and the fraternal -&.%

** These low values, as was pointed out by Yule at the Conference on Genetics in 1906 (Horticultural Society’s
Report), could be satisfactorily explained as due to the assumption of complete dominance. It is true that
dominance is a very general Mendelian phenomenon, but it is purely somatic, and if better agreements can be
obtained without assuming it in an extreme and rigorous sense, we are justified in testing & wider hypothesis.
Yule, although dealing with by no means the most general case, obtained results which are formally almost
general, He shows the similarity of the effects of dominance and of environment in reducing the correlations
between relatives, but states that they are identical, an asgertion to which, as I shall show, there is 8 remarkable
excepltion, which enables us, as far as existing statistics aliow, to separate them and to estimate how much of
the total variance is due to dominance and how much to arbitrary outside causes.

_ **Inthe following investigation we find it unnecessary to assume that the different Mendelian factors are of
equal importance, and we allow the different phases of each to occur in any proportions consistent with the

* The case of the fraternal correlations hag been unfortunately complicated by the belief that the correlation
on a Mendelian hypothesis would depend on the number of the fraternity. In a family, for instance, in which
four Mendelian types are lisble to cccur in equal numbers, it was assumed that of & family of four, one would
be of each type; in a family of eight, two of each type; and so on. If this were the case, then in such families,
one being of the type A would make it less likely, in small families impossible, for a second to be of this type,
If, as was Mendel’'s hypothesis, the different qualities were carried by different gametes, each brother would
have an independent and equal chance of each of the four possibilities. Thus the formulae giving the fraternal
correlations in terms of the number of the fraternity give values too small. The right value on Mendel’s theory
is that for an infinite fraternity. As Pearson suggested in the same paper, ‘ probably the most correct way of
looking at any fraternal correlation table would bhe to suppose it a random sample of all pairs of brothers
which would be obtained by giving a large, or even indefinitely large, fertility to each pair, for what we actually
do is to take families of varying size and take as many pairs of brothers as they provide.” In spite of this, the
same confusing supposition appears in & paper by Snow ‘ On the Determination of the Chief Correlations
between Collaterals in the Case of a Simple Mendelian Population Mating at Random’ (E.C.Snow, B.A.,
Proc. Roy. Soc. June 1910); and in one by John Brownlee, * The Significance of the Correlation Coefficient
when applied to Mendelian Distributions’ (Proc. Roy. Soc. Edinb. Jan. 1910).

I-2



6 COMMENTARY ON FISHER

conditions of mating. The heterozygote is from the first assumed to have any value between those of the
dominant and the recessive, or even outside this range, which terms therefore lose their polarity, and become
merely the means of distinguishing one pure phase from the other. In order to proceed from the simple to the
complex we assume at first random mating, the independence of the different factors, and that the factors are
sufficiently numerous to allow us to neglect certain small quantities.”

Although Fisher states that random mating is assumed at first, the theory is developed in terms
more general than this and he is careful to state when the additional assumption is introduced.
He also assumes for the present that each measured character is the result of sumaming a large
number of small factors which are independent, i.e. that there is no linkage. It then follows from
the standard properties of means, variances and covariances that the mean value of the character
in the population is equal to the sum of the means of the individual small factors, the variance is
similarly the sum of the individual variances, and the same is true of the covariances.

Suppose that for the particular factor considered the two possible alleles are 4, and 4,. We
then have the following table:

Zygote A, 4, A A, Ay 4,
Phenotypic effect a d —a
Frequency P 2Q R

If the individuals concerned had been produced by a process involving random mating and no
selection we would have PR =(Q?

and p=P+Q, ¢=0Q+R,
would be the gene frequencies of the 4; and A4, genes so that

P—_—pa, Q=pq’ R=q2‘

As assortative mating is considered later, it is more convenient to develop the theory in terms
of P, @ and R without assuming the Hardy—Weinberg formula except when random mating is
explicitly asserted. '

The variance o2 given by (I) is the contribution of this factor to the total variance o2 whether
or not the distribution is normal. The fact that the distribution of the sum of all factors will be
approximately normally distributed (particularly if measured after a suitable transformation)
will follow from the version of the Central Limit Theorem which proves asymptotic normality for
a sum of independent random variables each of which is ‘individually negligible’ in a certain
precise sense. The calculation of the third and fourth moment here is merely illustrative.

* 1. Letussuppose that the difference caused by a single Mendelian factor is represented in its three phases
by the difference of the quantities a, d, —a, and that these phases exist in any popula.tion with relative
frequency P, 2@, R, where P+ 20+ R = 1.

* Then a population in which this factor is the only cause of variability has its mean at

m = Pa+2Qd — Ra,
so0 that Pla—m)+2Q(d—m) — Rla+m) =
Let now Pla—m)2+2Q(d —m)* + B(a+m)? = «? (I)

o2 then is the variance due to this factor, for it is easily seen that when two such factors are combined at random,
the mean square deviation from the new mean is equal to the sumn of the values of a® for the two factors
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separately. In general the mean square deviation due to a number of such factors associated at random will be
written
02 = Zg?, (1T}

** To justify our statement that o2 is the contribution which & single factor makes to the total variance, it
is only necessary to show that when the number of such factors is large the distributions will take the normal
form. :

* If now we write s = Pla—m)*+20(d —m)? — Bla+m)?,

Hy = Pla—m)*+2Q(d —m)t + B(a +m)?,
and if M, and M, are the third and fourth moments of the population, the variance of which is due solely
to the random combination of such factors, it is easy to seo that

M 3= E#w
M,— 301 = Z(p,— 3at).
Now the departure from normality of the population may be measured by meens of the two ratios

M2 _ M,
ﬁ1=;g§ and ﬁ2=}‘4‘-

The first of these is (Zpeq) 3/ (Za?)8,

and is of the order 1/n, where n is the number of factors concerned, while the second differs from its Gaunssian
value 3 also by a quantity of the order 1/».”

In sections 2 and 3 the following problem is considered. Suppose that the measurement x
(measured from the population mean) is the sum of the effects of a large number of independently
segregating factors. For a parent (say a father) and an offspring (say a son) these measurements
will be distributed, to a high degree of approximation, in a bivariate normal distribution, and we
wish to calculate the regression coefficient of the value for the son on the value for the father. This
-is done by an ingenious approximate argument. In this it is assumed that the parents mate at
random but not necessarily the grandparents.

x (whose variance is ¢2) is the sum of a large number of independent factor pairs of which a
typical one is (4,, 4,) whose contribution to the variance is a®. Suppose the proportions of
(4, 4,) (4; 4,) and (4, 4,) in the whole population are P, @, E. We now choose a particular value
x for the father. In the subpopulation of fathers having this value, the frequencies of (4, 4,)
(4, 4,)and (A, 4,) will be different and we write P, @ and R for them. Our first task is to calculate
these.

To do this, consider a population of fathers in which all the factors have frequencies the same as
in the above population except for the one factor considered for which all individuals are to be
heterozygotes (4, 4,). The variance of this population is then ¢2—«a? since the component
variance, a?, due to 4,, 4,, has been removed in this way. If we now modify this in the manner
described and use the fact that the distribution of # is normal we see that the frequencies of
(4;4,), (4, 4,) and (4, 4,) must be

_ 2

Pexp { - (—;;—(o—_(:—_%:—;"} , ete,

in order to get the previously considered population. From this we obtain (II1) which is an
approximation obtained by supposing that

o?fo? and x%fo?

are small. These give the proportions of the three types in a population of fathers with value z.
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We suppose that these fathers mate at random with the general population. For the particular
factor considered we then get Table A, in which each cell gives the values of the possible offspring
with their frequencies.

TaBLe A
Father arvay
Mother, 4,4, 4,4, A, A4,
from. rest a d —a
of population P 26 B
— gy e o,
A, 4, a P @ @ d d
PF Py PQ PR
A4, d 2Q @ d a_ d —a d —a
PQ PQ QR 299 QQ QR QR
A, 4, —a R d d —u —a
PR QR QR BER

The sons therefore have values @, d and —a with probabilities
PP+ PQ+ PQ+ @G,
PQ + PQ -+ PR+ PR + EQ+EQ+2QQ,
Q@+ QR+ QR+ RR.
We now insert the values given by (LLI) and ignore terms of higher order than the first in #{o? and

we obtain the formulae given at the beginning of paragraph 3. Multiplying these by @, d and —a
and adding, we find that the expected value of the mean of the offspring is

2d(PR— (Q?) +%[1—’@(a—d)2+ 2PR(a®—d?) + QR(a+d)?+2(PR- Q¥ d(d—m)]. (I1la)
(A factor 2 multiplying (PR— @2) inside the square bracket is omitted in Fisher.) Note that in
~ order to obtain (I1I) it is necessary to use the result
m(P+2Q+ R) = aP + 2d¢) —akR.
If the parents are the result of a mating at random

PR—@® =0,
and (IIIa) simplifies to (IV).
Thus (IV) has been obtained by an approximate argument, However (IV)is exact in the sense
that it gives the ratio of the part of the covariance, which is due to the factor considered, to o2.
This means that if x is the value of the father and X of the son, where

= +,+..., X=X, +X+..,,
and x;, X; are the values of the contribution made by factor ¢, then
covariance (%, X,) = [PQ(a—d)+ 2PR(a® —d?) + QR(a + d)?].

(ITXe) is exact whether PR— Q2 = 0, or not.
We shall now prove this, and in doing so we shall revert to the notation P, @, R instead of
P, Q, R as Fisher does this in paragraph 4 onwards. In this way we will see that (IXIa) is also
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exact. In the association table (Table B), the columns correspond to the genotypes of the male
parent and the rows to the genotype of the female parent. In each cell the genotypes of the
offspring with their probabilities are given, assuming random mating in the parents. From this
we can immediately extract an association table for parent/offspring (Table C).

TasLe B
Male parent
el - Al
Female 7 d —a
parent P 2Q R
sy ey e ——— ———
4,4, o ¥ 7 o d d
e PQ PQ PR
A, 4, d 2Q @ d [/ d —w d —a
PQ PQ @ 2 @ QR QR
A4, —a R d a — — i
PR QR RE R2
Taere C
Parent
— - N
Offspring A4, A, 4, Ay 4,
A A, P2y P PQ+Q? 0
A4, PQ+PR PQ+2Q°+QR PR+QR
Ay A, 0 . Q>+ QR QR+ R

Notice that unlike Tables A and B, Table C is not symmetric about the leading diagonal but
does still have another type of symmetry about the other diagonal resulting from the symmetric
role of the two factors, 4, and 4, (the two previous tables of course also have this type of
symmetry).

From Table C in turn we can find the mean value of the offspring multiplied by the probability
of the parent, for each of the parental types, and this is shown in Table D. The sum of the third
column gives the mean value of the offspring which is

2d(PR —Q?).
TasLe D
Probability of parental
Parental type type multiplied by mean
and its value value of offspring
(‘_'_"'A—ﬁ
A A, a aP?+aPQ+dPQ+-dPR
14 d aPQ —aQR +d(PQ + 20+ QR)
Ay —a dPR+dQR —a R—aR*?

The covariance uncorrected for the means is the sum of the products of the first and second
columns. Calculating this and subtracting the correction for the means which is

mim+24(PR — Q2)},

we verify the formula before (IV) which is therefore exact when corrected as in (I1la).

KTASSEY UNIVERSITY OF
MAMNAWATY  LIBRARY,
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When the parents have been produced by random mating we have PR —§? = 0 which is the
Hardy—Weinberg relation and we can then write

P=p Q=pg, R=¢g"
where p = P+ Q, q = @+R.

2, If there are a great number of different factors, so that o is large compared to every separate «, we may
investigate the proportions in which the different phases occur in a selected array of individuals, Since the
deviation of an individual is simply due to a random combination of the deviations of separate factors, we
must expect a given array of deviation; let us say x, to contain the phases of each factor in rather different
proportions to those in which they exist in the whole population. The latter will be represented now by P, 20, R,
while P, 2@, R stand for the proportions in some particular array under consideration.

“ Congider & population which is the same in every respect as the one we are dealing with save that all its
members have one particular factor in the heterozygous phase, and let us modify it by choosing of each array
a proportion P which are to become dominants and to increase by a—d, and a proportion E which becore
recessive and diminish by @+ d: the mean is thereby moved to the extent m—d.

* Of those which after this modification find themselves in the array with deviation », the dominants
formerly had a deviation x—a+m, the heterozygotes x—d+m, and the recessives x+ @+ m, and since the
variance of the original population was 02 — a2, the frequencies of these three types are in the ratio

= (x—a+m)® ~ (—d+m)¥ = _(@+a+m)®
Pexp{— m)— -2Q6Xp 2(02_a2) :Rex 2—-~_(O_'2_—a2) B
or, when o is great compared to «, 30 that a?/o? may be neglected,
= x 7
P=Fr —1+B‘—a(a—m)-
I x ] I
Q=4 _1+;,(d—m)w (11T}
= x ]
R=R dl—a_—é(a-{—m)_

giving the proportions in which the phases occur in the array of deviation z.
*3. Hence the members of this array mating at random will have offspring distributed in the three phases
in the proportion

Pe [1 +«§;(a—m):| +P@ [2+§2(a—m+d—m):| +@? [1 +§2(d-—m)],
R X = € == € —_— T
Pg [2+;2(a—m+d—m)] +2Q [1 +;E(d—m):| +PR [2_;2(21”)] +QR |:2+c—r—5(d—m—a—m):| ,

- x - z = x
Q2 |:1+;3(d-m)] +QR |:2+(—)_§(d~—m—w—m)] 4 R [1 —-a_—a(a+m)i| ,
and therefore the deviation of the mean of the offspring is

2d(PE—Q?) +§—2 [P3(a—d)2+ 2PR(a?—d?) + QR (a+d)2 + (PE — Q%) d(d — m)].

“ Omitting the terms in (PR — @?), which for random mating is zero, the regression due to a single factor is
S [PQ(e— )+ 2PR(a" %) + QR(a-+ dP). (Iv)

*4, To interpret this expression; consider what is invelved in taking @, d, --a as representing the three
phases of a factor. Genetically the heterozygote is intermediate between the dominant and the recessive,
somatically it differs from their mean by d. The steps from recessive to heterozygote and from heterozygote
to dominant are genetically identical, and may change from one to the other in passing from father to son.
Somatically the steps are of different importance, and the soma to some extent disguises the frue genetic
nature. There is in dominance a certain latency. We may say that the somatic effects of identical genetic
changes are not additive, and for this reason the genetic similarity of relations is partly obscured in the
statistical aggregate. A similar deviation from the addition of superimposed effects may occur between
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different Mendelian factors. We may use the term Fpistacy to describe such deviation, which although
potentially more complicated, has similar statistical effects to dominance. If the two sexes are considered as
Mendslian alternatives, the fact that other Mendelian factors affect them to different extents may be regarded
as an example of epistacy.”

The value, d, for the heterozygote 4, 4, will not be exactly intermediate between the value
for A, A, and the value —a for 4, 4, unless d = 0. Fisher proposes to replace these by values for
which the heterozygote is ¢ + 5, ¢, ¢ — b. These values are fitted by least squares, i.e. by minimizing
the sum (Fisher uses § without a suffix for summation),

8 = Ple+b—a)?+2Q(c—d)®+ R(c—b+a)™

This procedure is equivalent to considering the linear regression of the measured value on the
number of 4, genes present, and the reason for its usefulness will appear later. To minimize 8 we
have to solve the equations

108, _

5 Plc+b—a)—R(c—b+a)=0,

188,

550 = Ple+b—-a)+2c—d)+ R(c—b+a) = 0.

The solution is ¢ = (P"';‘,)Qd’ b=a Q(P;R)d’

where T' = PQ +2PR+QR.

Fisher’s formula for b should have the first plus sign changed to minus. Notice that b and ¢
depend not only on a and d, but also on the frequencies P, 2¢, R.

Notice also that if PR = @2, T = Q.

Using these values we find the deviations from the regression line for 4, 4,, 4, 4,,and 4, 4,

to be c+b—a = 2RQAT, c—d=—2PRAT, c—b+a=2PQdT. (1V a)
These deviations have the expected value |
Ple+b—a)+2Q(c—d)+ B(c—b+a) = 2dT1(PRQ~2QPR + RPQ) = 0.
Their variance is therefore
82 = P(c+b—a)2+2Q(c—d): + R(c—b+a)?
= 4PQRAT. (IVd)

This is also by definition the minimum value of 8,, as follows from the ordinary least squares

regression theory.
The covariance between the ‘representative values’ and the ‘deviations from linearity ’ is then

the mean product (since the mean deviation is zero). This is
Plec+b—a)(c+b)+2Q(c—d)c+ R(c—b+a)(c—b)
= 24T Y[PQR(c+b) ~ 2QPRc+ RPQ(c—b)]
= Q.
Thus the correlation is zero as again follows from the usual regression theory.
The total ‘genotypic’ variance is
o? = P(a—m)*+ 20(d—m)*+ R(—a ~m)?,
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and can be decomposed into two parts. The first of these is the variance of the representative
valuoe 2 = Plo+b—m)P+20(c—m) + R(c—b—m),
which is nowadays called the ‘genetic’ variance due to the 4, 4, genes. The second is the variance
of the ‘dominance deviations’, 62, as given by (IV ) above. We can verify algebraically that
“2 - ﬁ2 + 82:

which is again a consequence of the usual regression theory, especially when the latter is pre- -
sented in an analysis of variance table.

If random mating holds, T’ = @, and PR = §? so that

o? = 202Q) — 4GP — B) ad + 2Q(P + R) d?
and % = 20%Q — 4Q(P — R) ad + 2Q(P — R)*d=.
(Fisher has 20%(*® in this formula (formula (VI)) which is wrong.) Then
' a?— % = 4Q%d? = 82,

The total variance, %, of the character in the population is the sum, Xa?, over all pairs of genes

like 4,, 4,, since we suppose the character is additive. Fisher writes

T = T2, e = 349,
50 that o2 = 72462,

““ The contributions of imperfectly additive genetic factors divide themselves for statistical purposes into
two parts: an additive part which reflects the genetic nature without distortion, and gives rise to the corre-
lations which one obtains; and a residue which acts in much the same way as an arbitrary error introduced
into the measurements. Thus, if for ¢, d, — ¢ we substitute the linear series

c+b,c,6—b,
and choose b and ¢ in such a way that

Ple+b—a)+2Q(c—d)*+ E{c—b+a)?

ig & minimum, we find for this minimum value 42,

g APORE
T PQ+2PR+QR’
whieh is the contribution to the variance of the irregular behaviour of the soma; and for the contribution of the
dditi art, #%, wh :
adcive p #*, where [% = Plc+b—~m)?+2Q(c—m)2+ R(c— b—m)?,
we obtain 0% = 204 PQ+2PR+QR),
. P -R)d

d = T

and since a+PQ+2PR+QR’
qP— R)2q2

we have F? =22 PQ+2PR+QR)—~4Q(P~R)ad + 2@ yid

PQ+2PR+QR’

5. These expressions may be much simplified by using the equation’

¢ = PR,
for then d% = 40Q%d? V)

£% = 20°Q% — 4Q(P — R) ad + 2Q(P — R)*d?, (VI)
which appears in the regression in Article 3 (IV), and ‘
 a? = 2a*Q(P — R)ad + 2Q(P + R) d2. (VII)
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*In genera) af = 482,
and if ' o = Ta?, (VIILI)
™ = EF2, (IX)
and ¢t = 42, (X)
then g% = 724 2"

The reasons for introducing this type of regression analysis are most easily seen from later
formulations of the problem by Malécot (Les mathématiques de Uhérédité, Paris (1948)), Li and
Sacks (Biometrics, 10, (1954), 347-360). At any given locus any individual has two genes which
can be distinguished by their origin one from the individual’s father, and one from his mother.
The effect produced by this pair of genes can be split up into three components in the following
way:

First gene Second gene TFrequency x= & + x + &g
A, 4, P a=He+d)+ He+bl+(a—c—b)
4y 4, Q d = He+b)+4o—b) +(d—c)
A, 4, Q d = }c—b)+§c+b)+(d—¢)
A, 4, R —a=}e—b)+3e—b)+(—a—c+b)

The first component is (¢ +b) or }(c—b) according as the first gene is 4, or 4,, and similarly
for the second gene. The third component is a deviation from linearity. Fisher’s ‘representative
value’ is &, + %,. With random mating we find from what has gone previously, that

1p? = var (z,) = var (z,), 0% = var(z;),
and the three covariances between the 2’s are zero. The correlation between (z; +,+ 25) and
(¢, + ) is then vair (2, + &) - 2 _ B
(var (@ + 2y + o) var (@ + 2yl (@28 o

Now consider a parent and offspring with values (x, +, + ;) and (X, + X, + X) respectively.
We make the convention that the ‘first’ gene (which results in the contributions x, and X, ) is the
gene which this parent hands on to the offspring, so that #; = X,. The second genes in the two
individuals are 4, and A4,, with probabilities p and ¢, independently of each other. Thus z, = X,
%,, and X, are distributed independently of each other, and so are the pairs (z,, X ;) and (7, X;).
%, = X, is uncorrelated with x, and X, from what has been proved above.

It can also be shown that xy and X, are uncorrelated. This can be done as follows. Suppose that
the gene passed from parent to offspring is 4;. Then using the above table and the fact that

P=p"@=p0 pq, | first gene is 4,) = pla—c—b) +¢(d —c)

= p(2RQATY) + ¢~ 2PRIT-1) = 0.

Similarly, E(X;|first geneis 4,) = 0.

Then E(x; X, | first gene is A4,)
= E(z, | first gene is A,) (X, | first gene is 4,)
= {. '

The same holds if the first gene is 4, and thus
E(zy) = E(Xy) = B(z; Xy),
so that cov (23, X5) = 0.
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The five variates z; = X, #,, 75, X,, X, are thus uncorrelated in pairs, so that the correlation
between x and X arises only through the pair z;, X,. Then

cov (x, X) = cov (x, X,) = var (z;) = 52

Fisher does not consider the components x, and X, separately but the ‘representative values’
(%1 +,) and (X, + X,). Thus from his point of view the correlation between parent and offspring
arises solely from that of the representative values,

Most pairs of relatives in a population can share a gene which may be passed directly from one
relative to another as with father and son, or which may come from a common ancestor as with
brothers. They are then said to have genes which are ‘identical by descent’, as distinet from pairs
of genes which may be identical by chance. We can say that father and son have ‘one gene in
common’, Similarly, uncle and nephew have probability 4 of having a gene in common, first
cousins have probability } of having a gene in common, and so on. Then arguing as above the
correlation between w,,x,, 23, Xy, X,, X, (where z, + 2,42, and X, + X,+ X, refer to the two
individuals) are all zero except that (@, X,) = 1uf,

where u is the probability of sharing a gene.

With pairs of sibs, or double first cousins, the situation is more complicated, since the
individual can then share two genes at once. In such a case each z, may be correlated with -
X, (r=1,2,3), but if r + s, the pairs (z,z,),(X,, X,),(z,, X,) are uncorrelated. Thus Fisher
remarks that with sibs and other such cases, it is necessary to take into account the correlation
between the ‘dominance deviations’ z, and X,

Avaluable general theory of this approach is given by Trustrum (Proc. Camb. Phil. Soc. 57 (1961),
315-320).

** The regression due to a single factor of the mean of the offspring of parents of a given array is

xz ﬂ2
e

: 2
and adding up the effects of all factors we find . %,

o2

so that the parental correlation for a static population mating at random is simply

i 72 (XT)
2 g%
We may regard this formula otherwise. The correlation between the actual somatic measurements such as
¢, d, —a, and the representative linear quantities ¢+ b, ¢, ¢ — b is 7/o. Thus the correlation of parent and child
is made up of three factors, two of them representing the relations between the real and the representative
measurements, and the third the correlation between the representative measurements of the two relatives.
Thus the effect of dominance is simply to reduce certain relationship correlations in the ratio 72/o2.

“ The values of the correlations between the representative measurements for random mating, which may
be called the genetic correlations, are given in the accompanying table:

Half 2nd  Half 1st Half Ancestral

Generations cousin cousin brother line Brother Istcousin 2nd cousin
Own 1/64 1/16 1/4 1 1/2 1/8 1/32
Father’s 1/128 1/32 1/8 1/2 1/4 1/16 1/64
Grandfather’s 1/2586 1/64 1/16 1/4 1/8 1/32 1/128
Great-grandfather’s 1/512 1/128 1/32 1/8 1/16 1/64 1/256

Great-great-grandfather’s 1/1024 1/256 1/64 1/16 1/32 1/128 1/512
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“ 6. The above reasoning as to the effects of dominance applies without modification to the ancestral line,
but in a special class of collaterals requires reconsideration. The reason is that the deviations from linearity are
now themselves correlated. In other words, a father who is heterozygote instead of recessive may have
offspring who show a similar variation; but they may also be changed from heterozygote to dominant. In the
case of siblings, however, whichever change takes place in one is more likely to occur in the other.

¢ Thus, writing ¢, 7, k for the deviations .
a—m, d—m, —(a+m),
so that P+ 2@ +kR =10 (XIT)

and p?, pg, ¢* for P, §, R, we can draw up association tables for different pairs of relatives, and readily obtain
the correlations between them by substituting the fractions in the nine sections of the table as coefficients of
a quadratic function in 4, 7, k.

““ Thus the association table between parent and child is

* »ig —
p3g pa(p+q) pgt
— Pge q°

from which we obtain the quadratic
P+ 2p%q + pg(p + 9) 7 + 2pg°ik + K%,
1
4pq

which is equal to (p2i— q2k)® = £43,

The association table for parent and child given by Fisher above has its columns corresponding
to the three genotypes 4, 4,, A, A,, 4,4, respectively, and hence to the deviations 4,3, k. The
rows have a similar meaning for the offspring. The entries in the table are the respective
probabilities of occurrence of all combinations of father and offspring; e.g. the combination
father A4, 4,, offspring 4, 4,, has probability p2. The entries can be found by putting P = p?,
Q = pg, B = ¢ in Table C, using p+¢ = 1. The ‘quadratic’ under the table is the covariance
(a word which he had presumably not yet invented). This can be found directly from its definition
as a mean product of deviations, i.e. as

Z (prob) (parent’s deviation) (offspring’s deviation)

=pi.i.i. +p%.5.0+ ...
= %%+ 2P0 + pg(p + 9) * + 20¢" ke + ¢k
(there being a misprint in Fisher’s text). On substituting for §, using (XII), this becomes
g (2R = 1,
the bracketed expression being squared and not cubed as in Fisher’s text.
To obtain the variance of father and offspring we use the formula for §2 given before, Then

B2 = 2a2Q — 4Q(P — R) ad + 2Q(P — R)?d?
= 2a?pg—4pq(p — q) ad + 2pg(p — q)?d*
= 2pgla—(p—q)d}.

Now P¥+2pgi+q% = 0,
and since a—(p~q}d =}(i—k)—(p—{j—§E+X)},
we find z{a—(p—g)d}=fz-k+1~”1;'—qq(p%+g2k)+(p~q)(i+k)

1
= — (ip? —kq®).
pq(zﬂ q°)
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Thus the variance is
1

o
A 2pq

which is twice the covariance obtained above.

ip® — kg™,

** while for brother and brother we have the table

P+ 19)° - pP(p+49) 1P
p(p+19) PgP* +3pg+¢7) P*(p+9)
ip'e® Pe(p+a) ¢*(3p+9)*
which gives us 8 quadratic expression exceeding that for the parental correlation by the terms
'

1 (82— 245 + 452 + 26k — 25k + K2),
which are equal to }6%, and therefore give for the fraternal correlation

1
g7 (T T

To obtain the brother-brother table we consider the table given before (Table B) of all possible
offspring of two randomly mated parents, and examine all possible fraternities. Then an
(4,4,, A; A,) fraternity can arise out of a crossing 4, 4, x 4, 4, with probability P?, or out of a
crossing A, A, x 4, A, with probability }{2P@+2P@Q) = PQ, or finally out of a crossing
A, Ay x A, A, with probability 4(4Q?) = }@Q? This gives us the cell in the first row and first
column of Table ¥ and the others are obtained similarly.

TaerLr E
Brother
Brother ‘ 7 k) , k )
g P24 PQ+1Q? _ PQ+ig 1Q?
7 PQ 4 3Q° PQ+2PR+ Q%4+ QR 1Q°+-QR
k 1e® 1024+ QR 1Q*+ QR+ R?

Notice this is symmetric about the leading diagonal and symmetric about the other diagonal
on interchanging P and B. On substituting for P, @ and R we get Fisher’s table. To save algebraic
labour we subtract the previous table and get an array of the form:

ir%®  —ip%® 19%*
—ip%g® p** - §pg*
1p*® -~ $p%g® Y

from which we immediately get the expression

10°°(i— % + k)%,
(2¢7 and 25k in Fisher’s result should be 44f and 4jk) and on substituting for ¢, §, % in terms of
@, d and m this becomes PR = 16

The brother-brother correlation is therefore exactly intermediate between parent—offspring
correlations with and without the same degree of dominance.
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We have set out the above argument in detail in order to show Fisher’s procedure. However,
the simplest way of finding the above brother—brother table is to use the fact that sibs have
probability } of sharing two genes in the previously used sense (and therefore of having the same
genotype at this locus), probability 4 of sharing one gene, and probability } of sharing no gene.
The above table is then found by adding the three corresponding 3 x 3 association tables. The
same method of approach can be used in all the following tables but we follow Fisher’s method in
order to make his discussion clear.

“The effect of dominance is to reduce the fraternal correlation to only half the extent to which the parental
correlation is reduced. This allows us to distinguish, as far as the accuracy of the existing figures allows, between
the random external effects of environment and. those of dominence. This halving of the effect of dominance,
it is Importans $o notice, is independent of the relative importance of different factors, of their different degrees
of dominance, and of the different proportions in which their phases occeur. The correlation between the
dominance deviations of siblings is in all cases, }.

“ 7. To investigate the cases of uncles and cousins we must deal with all the posgible types of mating down
to the second generation. The three Mendelian phases will yield six types of mating, and ordinary cousinships
are therefore connected by one of six types of sibship. The especially interesting case of double cousins, in
which two members of one sibship mate with two members of another, can oceur in twenty-one distinct ways,
gince any pair of the six types of sibship may be taken. The proportionate numbers of the three Mendelian
phases in the children produced by the random matings of such pairs of sibships is given in the accompanying
table:

Type of sibship ... 1.0.0 1. 1.0 0.1.0 1.2.1 0. 1.1 0.0.1

Frequency Pt 4p’q 2p3g? 4p’q? dpg® ¢
Pt 1.0.0 3. 1.0 1.1.0 1.1.0 1. 3.0 0.1.0
dpg 3.1.0 9. 6.1 3.4.1 3.4.1 3.10.3 0.8.1
2pig* 1.1.0 3. 4.1 1.2.1 1.2.1 1. 4.8 0.1.1
4pig? 1.1.0 3. 4.1 1.2.1 1.2.1 1. 4.3 0.1.1
4pg® 1.3.0 3.10.1 1.4.3 1.4.3 1. 6.9 0.1.3
g 0.1.0 0. 3.1 0.1.1 0.1.1 0. 1.3 0.0.1

0 3p pt3g ¢ plyg plag p3ptg 3¢ 0
P 4' 4 ‘¢ 3232 5'2°3 44 1 P9

“ The lowest line gives the proportions of the phases in the whole cousinship whose connecting sibship is of
each of the six types.

- To discuss uncle-nephew relationships and cousins we have to consider three generations
because we must first calculate the different probabilities of various classes of sibship which can
arise from a random mating of unrelated pairs. This is done in Table F,

Tasre F
Relative frequency of sibs

Type of Probability e - \

mating of mating A A, A, 4, o A4,
4,4, x4, 4, p? 1 0 0
A A, x4, A4, 4pq 1 1 0
A, A, x4, 4, 2pg® 0 1 0
A, A, x A A, apig? 1 2 1
A, A, x Ay A, 4pg® 0 1 1
A dyx A4, g 0 0 1

We may illustrate the meaning of this table by saying that the mating 4, 4,x 4, 4, has
probability 4p%2 of occurring and that each of its offspring has (independently) the probahbilities
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1, 1 and } of being 4; A4,, 4,4, or 4,4,. Such a sibship is denoted by Fisher by the symbol
(1.2.1).

Fisher’s 6 x 6 table is a table giving relative frequencies of the three genetic types in the
offspring from a mating in which it is known that one parent comes from one of the above specified
sibships and one from another. (Note that the entry 3.10. 1 in the fifth row and second column of
the 6 x 6 table should be 3.10,3). Thus the offspring of a mating between an individual out of a
sibship whose parental cross was 4, 4, x A, 4,, and an individual from a sibship produced by a
mating 4, 4, % A, 4,, will be of types 4, 4;, 4, A, and Ay 4, with probabilities 3, 1§, &5
respectively. :

To construct this table it is convenient to regard such symbols as (1, 0, 0), (1, 1, 0), ete., as row
vectors. To obtain any entry in the table we premultiply the vector corresponding to the column
by the transpose of the vector corresponding to the row. Thus in the above case we take

1 0 1 1
(1)(0 1 1)=(0 1 1).
0 00 0

Each element of the resulting 3 x 3 matrix is then multiplied by the corresponding vector in the
following matrix, and the products summed. This matrix is
' 4.0.0 2.2.0  0.4.0
2.2.0  1.2.1  0.2.2}.
0.4.0 0.2.2 0.0.4
These give relative frequencies of offspring as derived from Table F. Thus the matrix

011
011
0 0 O

gives (2.2.0)+(0.4.0)+(1.2.1)+(0.2.2) = (3.10.3)
which is the required result.

The table is symmetric about the leading diagonal and has a number of other symmetries.

If an individual from a sibship §; is mated with an individual chosen at random from the whole
population, the three types of individual will occur in the offspring with the probabilities given in
the last row. Thus if a member of a sibship of type (1. 1.0) is mated in this way, the offspring will
be 4, 4,, A, A; and 4, A, with probabilities

ip.1p+39). 1.

This can be seen directly or by summing the probabilities corresponding to the elements of the
columns of the 6 x 6 table after multiplying each by the probabilities of the rows, and then
rescaling to obtain total probability equal to unity. Thus if two individuals are cousins, and
connected by a given one of the above sibships, and are not related in any other way, each will
belong to 4, 4,, A, 4, or A, A, with probabilities given by the last line.

“Tf we pick out all possible pairs of uncle (or aunt) and nephew {or niece) we obtain the table

Pp+ig) 1p%q(3p+q) 1pig*
+p%(3p+9) 3pg(p*+ bpg+¢%) ¥ +39)
gt $rg*(p +3q) *(3p+q)

the quadratic from which reduces exactly to }4?% showing that when mating is at random the avuncular
correlation is exactly one half of the paternal.”
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The uncle-nephew table can be constructed from first principles by combining the previous
brother—brother table with the parent—offspring table, or it can be constracted from the above
6 x 6 table. Consider the latter method. Suppose that the uncle is the brother of the nephew’s
father. There are six sibships in which the father and uncle can occur and these are represented
by Fisher by the six row vectors (1.0.0), (1.1.0), (0.1.0),(1.2.1),(0.1.1), (0.0.1) at the top of
the six columns of the 6 x 6 table. The components of these row wvectors represent relative
frequencies and not probabilities. We therefore convert them into probabilities so that we obtain

(1.0.0), (3.3.0), (0.1.0), (3.3.B), (0.3.3), (0.0.1).
These six sibships arise with probabilities
Pt 9%, 20°% 4p°¢% 4pgt, ¢F
respectively and the corresponding probabilities of the 4, 4,, A, A4, and 4, 4, in the nephew are
given by the last row of the table. If the vectors of the last row of the table are turned into
column vectors (p.q.0), ..., ete., the 3 x 3 association table will have 9 elements which are the
elements of the 3 x 3 matrix

P(P.q.0) (1.0.0)+4p%(3p. Hp+39).19)" (3.4.0) +20°(3p . . 49)' (0.1.0)
+4p%*(3p.%.39) (3. 4. 1)+ 4pP(Ep - 389+ 9)- £9) (0. 1. ) +¢%(0.p.9)" (0.0.1)

p 0 0 i ip 0
=p*lg O O]+2p%|ip+39) Hp+3g O

0 0 0 g 1q 0
(0 ip 0) (%p P %p)
+2p%2{0 % O)+p%?*| %3 1 %
0 3¢ © W ¢ ¥
0 ip ip 0 00
+2pq3(0 1(8p+9) é(3p+q))+q4(0 0 p)
0 iq 3q 0 0 ¢

and adding these we obtain the uncle-nephew table given by Fisher, Notice that this table is
symmetric although the relationship is not. The rows correspond to the nephew and the columns
to the uncle. Inserting the values 1,7, k£ and multiplying each element of the matrix by the corre-
sponding product of ¢’s, °s and &’s we get a formula for the covariance which begins

P+ 3q) 12+ 2{3p%(3p + Q) G+ ...

y 2 2
Substituting for j = ——?5% the covariance reduces to
. ‘
(0% —02k)2 = 142,
spg P TR = 1f

Thus there ig no correlation due to dominance,

“From the twenty-one types of double cousinship pairs may be picked, the proportions of which are shown
in the table:

o+ 19 p%(p+19) ‘ TPt
$p%(p+1g) tpg(p? + 3Epg 4+ ¢°) $r¢i(ip+q)
F50%g* 3pgi(tr+9) *(ip+9q)°

which agrees with the table given by Snow for ordinary first cousins. I cannot explain this divergence, unless
it be that Snow is in error, my values for ordinary first cousins leading to less than half this value for the

2 ME&S
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correlation. Simplifying the quadratic in 4, 7, k, which is most eagily done in this case by comparison with the
avuncular table, we find for the correlation of double cousins

1
12T Tie),

showing that double cousins, like brothers, show some similarity in the distribution of deviations due to
dominance, and that with these cousins the correlation will in general be rather higher than it is for uncle

and nephew.”

Double cousinship is more complicated. Suppose the cousins are such that the two fathers
come from one sibship and the two mothers from another. There are therefore 36 possibilities of
which it is only necessary to consider 21 by symmetry. In the 6 x 6 table the individual entries
are 3 element vectors whose components are proportional to the frequencies of 4, 4,, 4, 4, and
A, A, in the progeny of a mating between individuals chosen from these sibships. Double cousins
are the results of independent choice of pairs from the same sibships in this way. We can therefore
construct a 6 x 6 table (Table Gi) in each cell of which we have first the probability that the two

Tasre G

p& 4p7q stqz 4pllq2 4135q3 ?349'4
1 0 0 9 3 0 1 1 o 1 1 0 1 3 0 0 0 0
0 0 0 3 1 0 1 1 0 I 1 0 3 9 0 01 0
0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0
16p%g® 8pty® 16p°g® 16p4g* 4py°
8] 54 O 9 12 3 9 12 3 9 30 9 0 0 0
54 36 6 12 16 4 i2 16 4 30 100 30 0o 9 3
9 6 1 3 4 1 3 4 1 9 30 9 0 3 1
4p*gt 8pigt 8pq® 2p%q®
1 2 1 1 2 1 1 4 38 00 0
2 4 2 2 4 2 4 16 12 0 1 1
1 2 1 1 2 1 3 12 9 0 1 1

16‘,()4(14 16p3q5 4?)2(10
1 2 1 1 4 3 0 0 0
2 4 2 4 16 12 01 1
1 2 1 3 12 9 0 1 1

16528 4dng?
1 6 9 0 0 0
6 36 54 01 3
9 54 81 0 3 9

qﬁ
0 6 0
00 o0
0 0 1

corresponding sibships have been chosen and then a 3 x 3 matrix whose elements are proportional
to the probabilities of the three genetic phases in the two double cousins. It is more convenient
to enter the matrix with numbers which are only proportional to the probabilities and not equal
to them, as in this way we avoid the use of fractions. To obtain the probabilities it is necessary to
divide each element by the sum of all the elements in the matrix.
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Thus if one of the connecting sibships corresponds to the symbol {0.1.0) and the other to
(3.1.0), the vector given in Fisher’s 6 x 6 table is (3.4.1), and the contribution to the covariance
table will have elements proportional to

9 12 3
(3.4.1)(3.4.1) = |12 16 4]},

3 4 1
and since the corresponding probability is
(4p%) x (2p°¢%) = 8p°¢%,
the sum of the elements of the matrix is 64, and there is another equal contribution from the
matrix situated symmetrically on the other side of the main diagonal, the contribution to the

covariance table is 9 12 8
Ip’(12 16 4.
3 4 1

The empty cells are obtained by symmetry. Multiplying by the probabilities, the reciprocal of
the sum of the elements of each matrix, and adding, we check Fisher’s table for double cousins,
The difference of this table from the uncle-nephew table is

6P’ —i° 1P
—$P%" '~
#%P%*  —ipt TeP®
which gives a term TePPq3(E — 25 + k)? = {50°,

and the correlation of double cousins is therefore
1 2 2
12T+ 1)
Notice that the double cousin table is necessarily symmetric,

* For ordinary first cousins I find the following tabls of the distribution of random pairs drawn from the
gix types of ordinary cousinship:

1p*4p+q) 1p%*(1p +q) $p%g?
pPe(Tp +q) pg(p*+ ldpg + %) trg¥p+79)
$pg? tra*(p+Tg) 9 (p+4g)
1.2 E1

which yields the correlation Pl

Ordinary first cousins are connected by a single sibship. They are therefore each the result of
the mating of one of the sibships in Fisher’s 6 x 6 table with a mate chosen at random. We can
therefore divide all first cousing into 6 classes according to the type of connecting sibship and the
covariance table is the sum of 6 tables. Each of the latter is obtained by multiplying the
probabilities of the connecting sibship by the matrix obtained by the column into row product of
the last row of Fisher’s 6 x 6 table by itself. Thus for example the first of these is (p.¢.0) with
probability p%, and its contribution is

»* pg O
PHp.9.0) (p.¢q.0)=p*pg ¢* O).
0 0 0
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The sum of all these is

. {P* pg O Tep’ (8% +9p9) 5P
P*lpg @ O)+4piq| S(8p%+9p9) Hlp+39)  elpg+3¢%)
0 0 0 1599 Te(Pg+3¢%) 154"
i* ip ipg Te?? T5(3p%+p9) 504 00 0O
+o6p2tldp 1 39 |+4p?{S(3pP+pe)  F5(3p+9)?  f5(9pg+3¢%) |+ 0 P* pg
v 19 i4° 509 T5(9pg + 3¢%) 57 0 pg ¢

Adding these we obtain Fisher’s cousin table which is checked except for the entry in the first
row and second column which should be

1r*q(Tp +q).
This table is necessarily symmetric.
Calculating the covariance and subtracting

(0% +2pgj +¢°k)* = 0,
. . 1 .
we get 1pg(pi—(p—9)j + k)" = g5 (P% — 4°%)* = 36%
g0 that for single cousins there is no dominance component in the correlation,

“In a similar way the more distant kin may be investigated, but gince for them reliable data have not yet
been published, the table already given of genetic correlations will be a sufficient guide.

‘“ 8. Before extending the above results to the more difficult conditions of assortative mating, it is desirable
to show how our methods may he developed so ag to include the statistical feature to which we have applied
the term Epistacy. The combination of two Mendelian factors gives rise to nine distinet phases, and there is
no biological reason for supposing that nine such distinet measurements should be exactly represented by the
nine deviations formed by adding 4, 5, or k to ¢/, §*, or k’. If we suppose that 3,7, k, ¢, j*, " have been so chosen
as to represent the nine actual types with the least squere error, we have now to deal with additional quantities,

which we may term
enn G2 fias

€31 €33 Gy
€31 Gz Cay

connected by the six equations, five of which are independent,
pren+2pges +q%ey = 0, PPen+ 20 ¢pt g =0,
PPeint 2pgen+qien =0, PRy +2°q e+ g%y = 0,
PPeg+ 2pgens + g ey = 0, Doy +2p°q €y + ¢ Pegy = 0.7

The definitions of 7,4, k are now modified. Suppose that we have two non-linked loci at which
the genotypes are 4, 4,, 4, 4,, 4, 4, and B, B,, B, B,, B, B,. Let their effect in combination be
@qy, ... 50 we have Table H.

TasrLE H
B, B, B, B, B, B,
'b" ‘7‘! k’
4.4, "' 250 Q1p a3
A4, 7 28] oy oy
4,4, & @31 Qg Ggg

We assume random mating and put p, p’, for the frequencies of 4, and B, respectively. We also
assume that random mating has been occurring in the population for a sufficiently long time for
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the frequencies of the genotypes 4,4, B, B,, A, 4, B, B,, etc., to have attained their limiting
values p?p'2, (2pqg) p'?, ete.

The values 4, j, k, ¢/, ', &', are now chosen so the sum of the corresponding values for the two
loci represent @y, @y,, ... as closely as possible in the sense of least squares. Write

€y = Oy —i—4', €gs = Agg—J — k',
€1z = Gy —4—J, e = Oy —k—1,
€13 = Gyz— 11—k, €gy = gy — Kk —7",
€y = By —j—14', €33 = Ggg—k— k.

A
Bog = Qg —)— 1
Then we want to minimize the sum

8, = g%} + 2p%p'q ey + 0Py el + 20qp el + dpgp'qed + 2pay e
| +¢°p"%ed + 29°p'q' €3y + 49 el

Differentiating S, with respect to ¢,7,k and 4',§’, k" we get the six equations given above by
Fisher. This process is exactly analogous to estimating row and column effects in an experiment
in which rows and columns are orthogonal, the orthogonality being here a consequence of
independent distribution of the two factors. Since the addition of a constant to all the a’s makes
no difference, we can choose the latter so that the mean of ¢, 7, k& and the mean of the ¢',5", %" are
both zero. This means that ‘

P4 2pq5 4+ g% = 0, p'% +2p'¢" +¢"%" = 0. (XILa)

Of the six equations only five can be independent in general for if we multiply the first three
by p"%, 2p'¢, ¢'%, respectively and add we get the same result as multiplying the second three by
%, 2pq, ¢%, and adding. Thus only 4 = 9— 5 of the ¢’s can be varied and the epistatic and dominance
relations arising from two different factors require four constants for their definition.

*“This is a complete representation of any such deviations from linearity as may exist between two factors.
Such dual epistacy, as we may term it, is the only kind of which we shall treat. More complex connections
could doubtless exist, but the number of unknowns introduced by dual epistacy alone, four, is more than can
be determined by existing data. In addition it is very improbable that any statistical effect, of & nature other
than that which we are considering, is actually produced by more complex somatic connections.

The full association table between two relatives, when we are considering two distinet Mendelian factors,
consists of eighty-one cells, and the quadratic expression to which it leads now involves the nine epistatic
deviations. A remarkable simplification is, however, possible, since each quantity, such as ey, which refers
to a partially or wholly heterozygous individual, is related to two other quantities, such as ¢; and ey, by
just the same equation as that by which 7 is related to ¢ and k, and occurs in the 9 x 9 table with corresponding
coefficients. The elimination of the five deviations ey, e,,, gq, a3, €219 therefore effected by rewriting the 2 x 9
table as a 4 x 4 table, derived from the quadratic in ¢ and % corresponding to the relationship considered.”

By the method of definition we can split the contribution to the total character due to the genes
at the 4 and B loci into seven components,
T = By + Xy + Ty + Ty + T4+ 5+ 2y,

where #, is the effect due to the ‘first’ gene at the 4 locus (e.g. that inherited from father), x, the
effect due to the second gene at the first locus (e.g. that from mother), and z, is the deviation from
linearity due to dominance, Thus #; +#,+ %5 = 1,5, k according as the genotypeis 4; A, 4, 45, or
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A, A, x, x5, x5 are the corresponding components at the second locus, and #; is the ‘epistacy’
deviation.

We-have already seen that x;,x,, 7, are uncorrelated in pairs, and the same holds good for
3, %3, %3 The latter are also statistically independent of z,, »,, x; because they are at an unlinked
locus.

It also follows from the set of equations such as

D1y + 2pges; + g5 = 0,
that for any fixed genotype, such as B; B,, at the second locus, the mean value of #; (= e,,) is zero.
Thus a4 is uncorrelated with the effects ], x5, x;, at the second locus. A similar argument holds
for the first Jocus. This could also have been seen from Least Square Regression Theory.

The seven components above are therefore uncorrelated between themselves, and the variance
of x decomposes into seven orthogonal components,

var# = L var (z;) + X var (z}) + var (zy).
We can similarly write the value, X, of the character for a relative as
X=X+ X+ X+ X1+ X+ X5+ X4,
_ where the X; have been numbered in such a way that any genes shared by the two relatives will
affect only x, and X, (or ] and X,) with the same suffix. Then because of this numbering and the
previous results, o %) _ Teov (#,, X,) + = cov (z!, X2) + cov (w4, X2).

The only terms that therefore remain to be considered are var (z;), var (X4), and cov (z, X;).
var (z;) can be written
PP + 2pged; + qPeds} + 2p'q' {pPels + 2pged, + gPeda} + ¢ H{pPels + 2ngeds + qPeds)
= p%4 +2p'¢’B+q"*C, say.

We can treat each of the quadratic forms 4, B, (' in the same way. Consider the first. This is a
quadratic form in e,,, €., €;; whose matrix is

p: 0 0
0 2pg 0],
0 0 ¢

where the rows correspond to e,,, €5, €3, and the columns also t0 ey, €4, €5, We turn this into
a quadratic form in e,,, e;; only by using the relation

1
=— (— p2eyy —Peyy),
qu(fpu 9%eyy)

which is one of the equations derived by least squares. The quadratic form 4 then becomes

€y =

%1 + %, |2 3 3
““*1‘12_16?!@—'3"1} +qPed; = (P "‘% ef1 +Pgen e + ¢ +gp 1

PPt + 2pq{
p2
z—g(p+29) $pq
which has the 2 x 2 matrix T = 2 ’
e
g 5 Cptg)
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where the rows correspond to ¢,,, ey, respectively, and the columns similarly. Exactly the same
relationships apply to B and C resulting in the same 2 x 2 matrix. We can therefore write

var (i) = (19 + ") {p"%e3+ 2p'q el + 9%} + pa{pers €51 + 20'q 010 €32 + ¢ Perz €55}
+ (q” + -2—") {23, + 2p'q'ehp + ¢ ey}
P ) . ( 4 ) S
+ ) D+pgl+{g®+- | F, say.
(29 % rq q 9 Y
We now apply the same procedure to D, E, F. D becomes

" p’3 t ot q ®
(P z_*,é,g?) et pgen bt (q 5 %’ ) s

£} ‘3
1 q
E becomes (p "‘+§q)eue31+2pqeuega+ pq613631+(q + p)els"'aa’
and 7 beoomes 0% o e 2 2%
an beoomeﬁ _p + 22" 33]_ +P g €qy 633 + q -+ 29" 633-

We have therefore reduced the quadratic form in the nine variables e,,, ..., €53 to one in four
variables e, 5, €3, €35 This is

(p2+ﬁ) {(p'%ff)e? +p'q'ey 05+ (q +, qra) e} }
29, 2q 11 11713 ?{p 13
+ n 27 1p'd L'y’ n, 90
pq {(P + 29,:) enntat el ¢ en K +3p'q ez e + (Q' + 210:) €13 esa}
3 3 3
(Q’ + gjp) l(P’z + %*) ¢t p'q'es gt (9"2 + %)‘?) ‘3%3} .

On taking out a factor 1/4pgp'q’ this agrees with Fisher’s result.

The method of deriving the above can be described in algebraic form. Given the matrix 7}
above and the corresponding matrix 7}, corresponding to p, ¢, we form the direct product, which
is of order 4, and is obtained by replacing each element of 7} by the product of this element
considered as a scalar with the matrix 7).

The second expression below for this quadratic is verified by expanding all the above terms
and subtracting the terms obtained from the expansion of

(p%p'%1, — D0 %15 — 470 %es + 479 Pes5)?,
whence we obtain four similar expressions of which a typical one is
2pap"3q’ (peys +ges)® + 2pgp'4(Peyy +4e5)* = 2pgp"¥( ey + gesy)®,
because p’+ ¢’ = 1. Thus the four similar terms in Fisher’s second expression below are correct

although they are only of the seventh degree in p, ¢, p', ¢', and not of the eighth as in the original
quadratic form,

* Thus the variance, found by squaring the individual variations, is derived from the 3 x 3 table

p* — —

— —_— qZ
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2
which yields the 2 x 2 table 221 (p-+2q) ipg
q &
ipgq 2 (2p+9)
and the quadratic in e, €4, €y, €4y
1
——[{r+29) (p"+2¢") p®p"® €2, + 3 similar terms 4 2p2¢2*p "+ 29°) €, ¢y, + 3 similar terms

4pqp'q’ ,
+ 2p%9*p 39" ey; €ag -+ €12 €21) s

which also takes the form
1
g PP e P — P ey + 00 %) + 2pgp(pess + gey)* + 3 similar torms].
The parental table pildg —}pg
—ipg a*l4p
. 1 . ; ,
yields T (0% ey — 02 e — PP e + 400 Pegs 1%

16pgp’q

The parent—offspring table has 9 x 9 = 81 cells. In order to reduce it we use the same kind of
transformations as in discussing the variance. Consider terms of the form

erm es'n!
where m, n are fixed and 7, s = 1,2, 3. From the parent-offspring table (Table C above) with
P = p* Q = pg, R = ¢® we obtain the following similar table (Table I), using the fact that the two
loci segregate independently.

Tasre I
Parent
I A o

Offspring €in €2n €3n

€1m »* p*q 0

Cam pq P 2

€3m 0 fors q®

We now use the formulae:
1 1

€om = — aﬁé (pgelm + qzesm)i Cop = — —2—27—9 (p2el’n» + g263n)’

We turn the quadratic form above (which has 6 variables if m + n and 3ifm = =) into a quadratic
form with 4 variables if m = n and 2 variables if m = n. We then get the array given in Table J,

Tarre J
€1n €an C3n
€1m Pildq 0 —}pq
Com 0 0 0
am —4pg 0 P ldp

which we can regard as a 2 x 2 table. Using this and the similar table with p’, ¢', the direct
product of the two matrices gives an array whose elements are the elements of Table K multiplied
1

16pgp’q

by .. The corresponding quadratic form is obviously
1 ! 14 ! '
Tepgpy PP "o =P x40 e + 4 "o
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TasLE K
en €31 €13 €33
e1 pip™ —pgip™ —pipPg® pp"q
631 — p?qu't qﬁp'& :p2q2p-’2q’2 _ qup’zqu
€1 —p'p"q” PP P ~pg"g
€53 P'ep" —¢'p"g” — g g'q
“and the fraternal table
P4y —
o g¥4p

leads us to the simple expression

1
Topary P2 b H P+ O+ PTG
Applying the same argument to the brother—brother table (Table E) and eliminating e,,, and
ey, from the corresponding quadratic form we get the array of Table L, which combined with the
similar result for p’, ¢’ gives

1 ! r 7
W {p*p"%% + 93¢ %els + Pp'%e3, + ¢°q Peg,}.
Tasre L

€in Can
€1 piaq 0
eam 0 e f4p

“ For uncles and cousins we obtain respectively 4 and - of the parental contribution, while for doubls

cousins the table

p?
= (9 —-
16q( p+g) 5 0q

qz
—al -
A1y 1652 T 2g)

and & quadratic similar to that for the variance.”

The same technique is applied to the uncle-nephew table to give Table M.

TasLe M
€1n Can
€1m PP/8q - g
Cam : — g ¢*/8p

Since this is one-half of the corresponding table for parent—offspring, the epistatic contribution
to the covariance between uncle and nephew is } that of the epistatic component in parent—
offspring covariance.

Cousins and double cousins are then easily treated in the same way.

* 8. With assortative mating all these coefficients will be modified. There will be association between
similar phases of different factors, so that they cannot be treated separately. There will also be an increage in
the variance.

* We must determine the nature of the association between different factors, and ascertain how it is related
to the degree of assortative mating necessary to maintain it. Then we shall be able to investigate the statistical
effects of this association on the variance of the population and on the correlations.
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*“If # be the marital correlation, then in a population with variance ¥V the frequency of individuals in the
range d is 1

e p—E RV -
J(ZHV)G RV dy = M,

. . 1 "
and the frequency in the range dy is NiiG eIV dy =

but; the frequency of matings between these two groups is not simply MN, ag would be the case if there were
no marital correlation, but

i Rk G

2nV«/(1-’—~Z2)OXp{ l—p* 2V o
— MN P® — Dpivy +
which is equal to /(1 /1»3) {‘" 2V(I Mz) =

* Instudying the effect of aszortative mating we shall require to know the frequency of matings between two
groups, each with a variance nearly equal to that of the whole population, but centred about means @ and b.
The frequencies of such groups in any ranges dv, dy can be written down, and if the chance of any mating
depends only on x and y, the frequency of mating between these two groups can be expressed as a double
integral. If M and N are the frequencies in the two groups, the frequency of mating between them is found to be

MN epabiv

The idea in the above section is that non-randomness in mating is due to a tendency for the
biometric measurements in the two mating individuals to be correlated. Suppose that these two
measurements are z and ¥, and that since they are the result of a large number of independently
segregating factors they can be supposed to be normally distributed. It is assumed that there is
no epistasis. We take their means as zero and their variances as V. The probabilities that they lie
respectively in ranges (z, z + dz) and (y, y + dy) are taken as M and N, and it is assumed that their
joint probability distribution is given by the bivariate normal distribution above with u as
correlation coefficient.

The expression

PR %03
sien| H
can be regarded as a weighting factor giving the relative probability of a mating between two
particular individuals which are known to have the measurements x and y.
Now suppose that these two individuals are chosen at random out of normal populations which
are known to have the means ¢ and b respectively and variances equal to V. Their relative
probability of ma.ting is given by

—_ 2 AT 202 29,2
1 J‘exp[( @)} (y—b)y px 2Wy+2£‘_y}dxdy

2nV’i' 12y W 2V(1—
" om V f f { 2)} dedy,
where W = (z—my)?—2u(x —my) (¥ —my) + (y —mg)2 + K,
where my =o+ub, my=>b+pua and K =-—2uab(l—u%).
Integrating out, the expression becomes
expi’%b

as required. Notice that this result is exact so long as the bivariate distribution is truly normal.
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When g 4 0 the non-randomness of the mating has two effects: (1) The Hardy-Weinberg
equilibrium for each individual locus is destroyed. (2} The zygotic frequencies for different
factors are no longer independent. Hence the average values of individuals of the form 4, 4,,
A; A4, and 4, 4, cannot be taken as ¢, § and %, but depend also on other loci. It is this which
introduces the essential corplication and requires the introduction of the condition that the
population is stationary.

Fisher now investigates the effect of assortative mating on the genotype frequencies, using the
condition that these frequencies are the same in the offspring generation as in the parent genera-
tion. This implies that the probability of being a parent is independent of genotype so that there
are no selective differences. It is possible to devise schemes of assortative mating in which, for
example, the extreme types are less likely to find suitable mafes. In such a case the distribution
amongst the offspring of all the matings would be that of the population as a whole but not the
same ag that amongst ‘parents’,

We first. consider the effect on the frequencies of the three phases of a single factor. Write
D,Hand Rfor A,4,, A, 4,and A, 4,. Consider the effects of the various types of mating listed
below:

Mating Offspring Mating Offspring
DxD D HxH ID+IH LR
DxH D+ +H Hx R $H+ 3R

Dx R H Ex R R

The first two and last two of these matings will, in an indefinitely large population, produce no
change in zygotic frequency since the relative proportions of the phases in the offspring are the
same as those of the parents.

Out of all possible matings let the frequencies of mating D x Rand H x H be f, and f,respectively.
Then the contribution of these matings to the next generation will be such that D, H, R are in the

"
proporhon o Atife Mo
whilst the proportion of D, H and R amongst the mates entering into these matings is %, {, 1.
If these ratios are to be the same we must have f, = 2f;. Let I, J, K be the means of the character
in the individuals which are D, H and R. Since there are supposed to be many loci contributing
to the character, the contribution of any one locus to the whole character is small, so that

v Jivi Kjvi
are all small and the variance of the character for a given phase at this locus is practically V.
Hence the frequencies of these matings are proportional to

B#IKIV and eﬂJaIV’
by the above theory, and IK|V, J2/K are quantities of the second order of smallness. Hence to
a high degree of approximation 4Q2 sV — PR oMEW '
Expanding the exponentials and neglecting squares of J2/V and IK/V, we get
PR—Q% = (u/V){Q*J2— PRIK} = p(@*V){J*-IK},

on observing that PR — Q?is of the second order of smallness. Note that this is an approximation.

We now put P=p*+d, Q=pg+d, R=¢+0
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Then &) + 28, + 83 = 0. The gene frequency of 4, must be
p=P4+Q =p+pg+0,+8=p+d;+3,
and hence 8, + 8, = 0. Similarly, d,+ 8, = 0. Hence
8 ==0,=0,=20, say.
If (XTII) is to be satisfied with {J% — IK) V- small,  must be small also, and substituting we get
(8 +3) (g + 8)— (pg — 8) = (pg— ) u(J2~ 1K)V,
and to a first approximation & = p?¢Pu(J2—IK)|V,

so that (XIV) follows.

The deviation in P, @, R, from the values they would have if the Hardy-Weinberg equation
held, are of the second order of smallness when

Ijvy, Jivt, K(vi

are regarded as being of the first order of smallness. Equation (XV) follows from the definition of
1, J, K and we can use this to eliminate J. The first approximation to J is got by putting 3, pqg,
q2 for P, ¢}, R so that 1
J = — (P +¢2K),

opg P A TTH)

and putting this in the expression for o we get

%&(’pgl +¢2K)2—p*?lK} = ﬁ,(pzl — 2 K)>.

“10. We shall apply this expression first to determine the equilibrium value of the frequencies of the three
phases of a single factor. Of the six types of mating which are possible, all save two yield offspring of the same
genetic phase ag their parents, With the inbreeding of the pure forms D' x D and R x R obviously no change is
made, and the same is true of the crosses D x H and R x H, for each of these yields the pure form and the
heterozygote in equal numbers. On the other hand, in the cross D x B we have s dominant and a recessive
replaced in the next generation by two heterozygotes, while in the cross H x H half of the offspring return to
the homozygous condition. For equilibrium the second type of mating must be twice as frequent as the first,
and, if 7, J, and K are the means of the distributions of the three phases,

40t eIV = PR oiIKIV,
“ Since J/V and IK/V are small quantities, we shall neglect their squares, and obtain the equation

JE—IK
7

PR-Q* = Q% (XIIT)

If, as before, the two types of gamete are in the ratio » : g, the frequencies of the three phases arve expressed
by the equations Ji-IK

P =p'+p*u—p—,

JETK

Q = py—PLh—5 > (XIV)
JE—IK
R =g+ piu .
“ It is evident that
PI4+2QJ+RK =0, {(XV)

and this enables us, whenever necessary, to eliminate J, and to treat only I and K as unknowns. These can
only be found when the system of association between different factors has been ascertained. It will be



P.A P MORAN AND C. A, B.SMITH 31

observed that the changes produced in P, @, and R are small quentities of the second order: in transforming
th tit;
e quantity L BIK
P>

we may write — (p2f + g2K) for 2pgJ, leading to the form

Hone 7 — gtK)2
17 (p*l —g°K )%,
which will be found more useful than the other.

11, The nine possible combinations of two factors will not now oceur in the simple proportions PP’, 2PgQ’,
etc., 89 is the case when there is no association: but whatever the nature of the association may be, we shall
represent it by introducing new quantities, which by analogy we may expect to be small of the second order,

defined so that the frequency of the type
DD’ is PP'(1+4,,),

that of DH’ is 2PQ(1 4+ f12),
and that of DR is PR'(1+ f13),
and so on.”

We now have to study the effect of assortative mating on the joint distribution of pairs of
factors since such pairs are not now distributed independently of each other.

Write D, H, R for the phases of one factor with frequencies P, @, R,and D', H', B’ and P', @',
R’ for the second factor. The joint frequencies can then be expressed by introducing new quantities
f11s - > f33 in the manner shown in Table N.

Tasre N
2nd factor
1st factor ZD’ H’ . R)
A PI Qf RI
D P PP'(1+f11) 2PQ'(1+f10) PR'(1+f13)
H @ 2QP(1+fa) 4Q0Q°(1 +f1) 2QR(1+f1)
R R RP(14fy) ZRQ(1+f32) EBER(1 +f3)

(Notice that B and R’ are used in two different senses.) Since the sums of the rows and the
columns must equal the corresponding row and column frequencies we get (XVI). Since the
first three of these equations when mulfiplied by P, @, R and added are equal to the second three
multiplied by P’, @', R’ and added, only five of these equations are independent, and so four of the
f’s are independent. We take these as fi, f1s, for and fog.

“ Formaelly, we have introduced nine such new unknowns for each pair of factors, but since, for instance,
the sum of the above three guantities must be P, we have the six equations
Plfiy+2Q 12+ Bfis =0, Pfiy+2Qfu+EBfyy =0,
Pl +2Q 02+ R =0, Ffin+2Qf0n+Efs, =0, (XVI)
Pl +2Q s +EBfas =0, Efis+2Qfis+ERfgs =0,

five of which are independent. The unknowns are thus reduced to four, and we shall use f1;, fis, fa1, fas» since
any involving a 2 in the suffix can easily be eliminated.

“We h furth . . . .
o nae TurRher I = i 4 TPy 2QF frat B Fg),

J = J+E(PU o+ 2QT foa + Bl f5), (XVII)
K = bt 5Py + 207 g + B K fag),
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in which the summation is extended over all the factors except that one to which <, 7, k refer. Since we are
agsuming the factors to be very numerous, after substituting their values for the f’s we may without error
extend the summmation over all the factors. The variance defined as the mean square deviation may be evaluated

in b he f°
interms of the f's 3, S(Pit 2075+ B + 25(PP/(1 +,,) i’ + 8 other terms},

which reduces to Z{Pi2 4 20 52 + BE?) + 2X{PP'ii’f;, + 8 other terms},

s0 that V = S(Pil +2Qj + REK)."” | (XVIIT)

We are assuming no epistasis, but the non-randomness of mating makes the average value of
individuals which are D, H and R for some particular locus not equal to 4, §, k, which are the values
they would have if the genes at the other loci were fixed. Thus if there are just two loci the average
value of individuals which are D for the first locus is got by averaging the deviations of DIV,
DH’, DR’, and so is

PY(E+3) PP/ (1+f11) + (0 +5) 2PQ'(1 + frg) + (i + ') PE'(1+f15)}
= PUPP' (1 +f11) + 2PQ' (1 +f19) + PR (1 +f33)) + PP + 2)'Q" + B'R')
+ PP 1y +2§'Q frat B B'f13)}-
By (XVI), the definition of ', §’, &', and of f,4, f,, f1a thisis equal to ¢ + (¢'P'fy; + 2§’ Q'f o + K B'f ),
and summing over all other factors we obtain (XVII). Notice that we then have
PI+2QJ+RK = 0.

Suppose that the biometric measurement can be written as the sum, ZX,, of a large number of
factors. By definition the mean value of each X is zero and the variance is

B(ZX,) = 2EXG+ ¥ B(X,; X)),
and iﬁserting the above values we get "
Z(Pi%+ 2077+ RE?) + 25{PP' (1 + f1,) 04" + 20" P(L + f1,) 4" + PR'(1 +fra) th" + 2QP" (1 + f51) i’
+4QQ (1 +fae) i’ + 2QR (1 4 fo3) jk' + BP'(1 + fo) i’ + 2RQ'(L +foo) kj" + RR'(1 + fop) Kk}

The second summation is taken over all distinet pairs of factors. The terms within the second
summation not involving f’s add to zero, and using (XVII) we obtain (XVIII).

“12. We can only advance beyond these purely formal relations to an actusl evaluation of our unknowns
by considering the equilibrium of the different phase combinations. There are forty-five possible matings of
the nine types, but since we need only consider the equilibrium of the four homozygous conditions, we need
only pick out the terms, ten in each case, which give rise to them. The method will be exactly the same as we
used for a single factor. Thus the matings DD" x DD have the frequency

PP PP (1+ful(1 +fu)expip(l + 13V},
which for our purpose is equal o PP+ 2f) + (uf VT + T)%).

The number of possible pairs of phases is 9+ £(9) (8) = 45, but we only need to consider the four
homozygous types. Then a mating of type DD" x DD’ will have a relative frequency

{PP'(1+fi)fPexp{u(I + 1"} V}
which is approximately (PP YR2{1+2f, + (V) (I + I3

We consider all the matings which give rise to the four homozygous types and it is sufficient,
by symmetry, to consider the terms which give rise to DD’. For single factors the only matings
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which give D are D x D, Dx H and H x H. Thus the ten relevant matings with their relative
frequencies and the proportion of DD’ in their offspring are given in Table O.

TasLe O
Probability
Mating Frequency of DD’
DD x DD (PP 2f + (VYT + I8 1
DD’ x DH’ 2P2PQ {1 +fu+fra+ (W VI + I (T +J7)} 3
DA’ x DH’ 4P*Q1 + 210+ (VI +J')% i
DD’ x HD' 2PQP1+fuy +fu + (VYT + 1) (T +I')} 1
DD’ x HH’ SPQP'Q (L4 fyy +faa+ f V) (T + ) (T +J)} }
DH x HH’ 8PQQ (1 +fry +fan+ (V) (L +J7) (T + ) 3
HD'x HD’ 4Q2P 1 4 Bf,, + () VY {J + I")% 1
HD'x HH' SQEPQL +for +faa+ (B V) (J + I) (J +T7)} %
HH' x HH' 16G°Q 1 + 2o + (u/ V) (J + 77} EX
DH’x HDY 4PRP'Q {1 +fratfu+ VYT +T' NI+ 1)} s

In cases where the pairs of mating individuals are different the above frequencies must be
multiplied by two. Adding all together we obtain the left-hand side of equation (XIX). The fact
that these together equal the right-hand side expresses the condition that the frequency of DD’
does not change from generation to generation.

* Collecting now all the matings which yield 1I’, we have for equilibrium

PRPLL 4 2fy + (VI + I8+ 2P2P Q1 4-Foy + FraH (VI (L + ) (T + )]
+2PQPY[L+fy, +fu+ (V) I+ IVT + I+ 2PQP'Q L +fiy +fan (1 V)T + 1) (T +7)]
+2PQP'Q1 +fua+fin + (Wl V) (L + ) (T + TV + PRQ3[L+ 2fsa - (uf V) (L + )]
+ Q2P+ Oy + (1 VYT + )21+ 2PQQ [L + fro o faa+ (0] VY L+ ) (T + )]
+2Q°P'QL +fy+Hfaat V) T+ I) (T 4TV 1+ QUL +2fpg + (V) (J +T]

“ Now since

(P+QP (P +QP—PP(P+2Q+R)(P'+2Q'+R') = (@*~PR) P'+(@*— P'R) P+ (Q*— PR) (Q'= P'R)

the terms involving only P and @, reduce (XTTT) to the second order of small quantities,”

Consider all the terms on the left-hand side of (XTX) which do not involve f’s or g. These sum to
(P+@) (P +Q')

The equation immediately following (XIX) is an algebraic identity. If quantities such as 7V~

areregarded as being of the first order of smallness, ¢* — PR, and @'2 — P'R’ are of the second order

of smallness and we can neglect (92— PR) (@' — P'R’). Hence the difference between the sums of
terms on the left- and right-hand sides not involving f’s or g is equal to

‘ (@2—PR)P'+(Q*~P'R)P = — P'Qp|V) (J2—IK) - PQ*(u|V) (J2—I'K’)

by using (XIII), the error being of the fourth order. There is a misprint in the paper, it being (XIX)
which is reduced and not (XIII). Fisher probably means ‘by (XIII)’.
Next we pick out of (XIX) the terms involving # and these sum identically to

p V(P + QV(PI+ QY+ (P+Q)(P'I'+@J)2
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From this we eliminate J and J’ by using the identities
PI+2QJ+RK =0, PI'+2QJ +R'K =0.
We then obtain
(AP + Q) (PI-REK)+(P+Q)(P'I' —R'K")? = (u/aV){p'(PI - RK)+ p(P'I' - R'K")}?,
on writing p’ = P'+ @', p = P+@. Expanding the square and subtracting the previously
obtained term, we get (a/2V) pp'(PI— RK) (P'T' ~R'K").
Next congider the terms on the left-hand side involving f’s. Adding, and using p, p', we get
2PP'pp'fi; + 2PQ'pp'f1a+ 20P P for + 200" 0P foa.
We get rid of the suffix 2 by using

2Q’f12 =-—P ’f 1m- -R’f13a
2Qfo = —Pfu—Bfsy,
4QQ for = PP'fy; + PR'f15+ RP'fyy + RR'fys,
and we obtain 3pp'{PP'f,, — PR'fi;— P'Rfy, + RR'fy35}.
Adding this to the term in # and equating to the right-hand side we obtain (XIX ¢). Writing down
the three other equations, and adding and subtracting we get (XX) onusing p+g=9"+¢' = 1.

Substituting back in (XIX«), and putting P = p2, P’ = p? which we can do to the degree of
approximation to which we are working, we get the four equations (XXI) which give the f’s

explicitly.

“ = (@ VPQUP-IK) + PRI 2~ I'K")] = — (uf4V) [p"H(IP— KR)* + p¥I'P’'— K'R’)?].
Also collecting the terms in I and J, we find
{#{ V(P +@)(IP+JQ) + (P+QNI'P' +JQ)],

which yields on eliminating ./, (u/4V)[p'(IP - KR)+p(I'P'— K'E")?,
while the result of collecting and transforming the terms in f is

P TPP fu— PR f1s— P'Bfn + BE 3]
Hence, if the frequency of the type DD’ is unchanged

(#/2V)pp'(IP~KR) (I'P' — K'R")y 4 pp'[PP'fiy — PR'fiy — P’Bfgy + RR'fy,] = PP’f,,. (XIXa)

“ Now the corresponding equations for the types DR', RD', B’D’ may be obtained simply by substituting
K for I. E for P, and vice versa, as required; and each such chenge merely reverses the sign of the left-hand
side, substituting ¢ or ¢° for p or p’ ag a factor.

Combining the four equations

(#2V) (IP— ER) (I'P'— K'R') = }{PP'fy; — PR'fyy— RP'fy + RR/fy] (XX)
so that the set of four equations
(/VY(UP—BER)(I'P'— K'R’) = pp'fin = —pefis = — 0 fn = W@ (XXT)

gives the whole of the conditions of equilibrium.
“18. Bubstituting now in (XVII}, which we may rewrite,

I =0+ Z[P( =§") fu = B — ) f15),

K = k+Z[P'(& =) for— B(F — ¥} fasls
we have

IP—KR = iP—kR+X(u/V)(IP— KR)(I'P' — K'R') [p'(i' —§') + ¢'(§ — k)] = iP — kR + A(IP — KR),
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where A(l=A) = (p/V)ZE' P — KR [p' (& -3 )+ (5"~ ¥)]
= (u/V) Zp? since §2 = (EP;Q]GR)B
or A(1—A) = u(z*/ V). (XXII)

Using (XVI) we convert (XVII) into

I =i+ Z{P'(&" ') fra = B'(§' — ¥} s

K =k+Z{P'(' 5 ) fr — B'(§' — ') fas}-
Here the summation is taken over all loci other than the particular one under consideration.
Multiplying by P and R, and subtracting we obtain

IP—KR =1iP—kR+A(IP—-KR),

where A = S(uV)(I'P - E'R) g/ —j) +4'G' — ).
In this form the resultis not useful since I’ and X', which refer the loci over which the summation
is taken, occur on the right-hand side. We therefore apply the same formula as above to each of
these loci to obtain I'P - K'R =yP -K'R + A(I:Pr _ K'.R’),
because the summation can be taken over all loci, the contribution of any particular one being
negligible. Then (1-A4)(I'P'— K'R') = i'P’' — k' R’, and substituting again we get

—_ &?;'Pl—k’R’ e L L
s0 that A(L—A) =Z(u/V)@'P' - R ){p'(¢'—§)+¢'(j' = &)}, (XXIla)

and each term in the sum now refers to a single locus. We can therefore drop the dashes. To the
degree of approximation required we can put P = p?, B = ¢* and
pl—5) +9(j— k) = pi—gk+(p—9) (1/2pg) P% +¢%k)
= (1/2pg) (p% — g*k), |
20 2a
b (% — k)

so that finally A@}-4)= V 2pg
g T
_ Vzﬁ i (XXIId)

* It would seem that there is an ambiguity in the value of 4, so that the same amount of assortative mating
would suffice to maintain two different degrees of association: we have, however, not yet ascertained the value
of V. Since this also depends upon A, the form of the quadratic is changed, and it will be seen that the
ambiguity disappears.

* Supposing 4 determinate, we may determine the association coefficients f for

(iP—kR)(#'P' —K'R')
# ) )pp

T ’ | XXTIIT
Py = 5 _MAF (P —kR) (;’P' ~K'R’) ot ( )
Henee I= ”ﬁé %—VEZW(@" —i G - RGP —E'R)

M&S
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.. A «P-kR
and so I=i4 A p
A iP—FkR B
. - ey XX1V
Similarly K=k A g { )
A P
&nd J = 32 -_-l-:-_—A- 2_}’)&- (@P“}(R).
VP k'R
W AL N S
e have FPRKR 4,

and substituting this in (XXI) and multiplying by pp’ we get (XXIII) from which (XXIV)
follows by simple substitution using (XXII«) and (XXII15).

* 8o that the sense in which the mean value of the heterozygote is changed by assortative mating depends
only on whether p or g is greater. In spite of perfect dominance, the mean value of the heterozygote will be
different from that of the dominant phase.

* The value of the variance deduced from the expression

. V = Z(Pil +2Q7J + REK)
reduces to a similar form. For evidently

V = Ta+ TZAE (P —kR) [p(i —j) +q(F —*)].

Hence V=0t 72, (XXV)

P-4
Therefore the equation for 4 finally takes the form
art=VA(1-A)y=A(1-A)a?+ A%,
and may be otherwise written A%2— Ao+ pur? = 0. (XXVT)”

Here ¢ = 02— 7% as usual. When 4 = 0 the left-hand side is 72 > 0, When 4 = p it becomes
#(pt— 1) (o —72) which is negative and when A = 1 it is still negative, whilst when 4 is large it is
again positive. Thus the quadratic roust have two roots, one in the interval (0, #) and the other
greater than unity. 4 cannot be greater than unity because the right-hand side of (XX11b) is
positive.

* Now, since the left-hand side is negative when 4 = 1, there can be only one root less than unity. Since,
or .
moreaver (f A2 72 = (A - A?) g2 (XXVTa)

it is evident that this root is less than g, and approaches that value in the limiting case when there is no
dominance.

** A third form of this equation is of importance, for

2 2 — 2
4__ 7 T4 (XXV1b)
# ot—A4e ot [4/(1-4)]7*
which is the ratio of the variance without and with the deviations due to dominance.

“14. Multiple Allelomorphism. The possibility that each factor contains more than two alielomorphs
malkes it necessary to extend our analysis to cover the inheritance of features influenced by such polymorphic
factors, In doing this we abandon the strictly Mendelian mode of inheritance, and treat of Galton's ‘ particulate
inheritance’ in almost its full generality. Since, however, well-authenticated cases of multiple allelomorphism
heve been brought to light by the Mendelian method of research, this generalised conception of inheritance
may well be treated as an extension of the classical Mendelism, which we have so far investigated.
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*If a factor have a large number, #, of allslomorphs, there will be n homozygous phases, sach of which is
associated with a certain deviation of the measurement under consideration from its mean value. These
deviations will be written 4,4,,...,%, and the deviations of the heterozygous phases, of which there are
n(n— 1}, will be written 5y, 713, f4e, and s0 on. Let the n kinds of gametes exist with frequencies proportional
to p, ¢, 7, 8, and 50 on, then when the mating is random the homozygous phases must ocour with frequencies
proportional to g2 ¢%,%, ..., and the heterozygous phases to 2pg, 2pr, 297, ...

* Henee, our measurements being from the mean,

P gMe st + 207+ 2P0+ = 0. (XII¥)
*“ As before, we define «? by the equation
P24% + g3 4+ r¥3 + . 4 2pg sty + 2Pt kL = af (1%

and choosing I,m,n, ...,so that
PA2— 0B+ g?(2m— )2 + ... + 2pg(l+ m—J P + 207+ n—F18)% + .0
is a minimum, we define 8% by
4i2p2 4+ 4mPq? + ... + 2pq{l+ m)2 + 2pr(l 4+ n)2... = B2,
the condition being fulfilled if U= phi+ e+t
m = Phat+ @+ 1fas oo

and 80 on.
“ Now f? = S(4Pp?) + 8(2pgil+m}?),
= §{2p(1+p) ¥*) + S{4pgim),
and since pl+gm+rat.. =0,
B2 = S(2pi%),

which may now be written as a quadratic in ¢ and j, represented by the typical terms

2p%2 + 4p2qi; §1o -+ 20g(D T 9) 53, + 4P1T 12715

We assume there are % alleles 4., ..., 4,, with frequencies p, g, 7, ... respectively. The » homo-
zygotes are A Ay, .. A, A,
with values Uiy eees by
and there are {n(n— 1) heterozygotes 4, 4,, A; 4s, ..., whose values are ji,, jig, -+
Put 8 = P42 —i )2+ .. 2pq(l - m—j)% + .
where I,m,n, ... are to be chosen by least squares to give the linear additive contribution to the

variance. (Fisher uses 8 without a suffix for summation.)
The minimization equations are typified by
1a8, . . .
0 =352 =22 —i) +pgl+m—jig) +pril+n—jig) +...

=p{l{p+ 1)~ i~ @~z — ... Fgm+m+t ..}
and since p + 0, l=pt—qjp—1ig— ... + (Pl+gm+rn+...) = 0.
Multiplying this equation by p, the corresponding equation by g¢,r, ..., and adding we get

(pl+gm+..)+(p+g+...)(pl+gm+...) =0
because we have defined i,, 4, ... and jy,, ... so that the population mean
DYy + %+ ... + 200555 + ...

is zero. Hence pl+gm+...=0,

and D= piy+ @t ist....
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The linear component of variance is then
B2 = 4{lpt g b4 2fpq(l+m) .
But pl+gm+...= 0, and therefore
PR+ g*mPt . 4+ 2pglm ... = 0.

. Taking twice this from §? we get

2= 200+ 2gm2+ .. ) (p+g+...)
= 2pl+ 2gm®+ ...,

and inserting the values of I, m, ... we get

B =2p(Pis+qirat - )P+ 20(PJrat Pa+ et 2+
= 2P%+ g3+ .. )+ 4D i+ P9 Jrat o) + 2P+ PPt o PPt )
+4(Pgrise Jrst ...
of which the typical term is that given by Fisher.

“Now we can construct an association table for parent and child as in Article 6, though it is now more
complicated, sinee the j’s cannoct be eliminated by equation (XII*), and itg true representation lies in four
dimensions; the quadratic in ¢ and j derived from it is, however, exactly one half of that obtained above, so that
the contribution of a gingle factor to the parentsl product moment is 342 Hence the parental correlation is

172
2 g2’

whers 7 and ¢ retain their previous meanings.”

The association table between parent and offspring could be written down as a
inn+1)xin(n+1)

table but we need only to write out the typical terms. Part of these can be obtained from the
previous parent—offspring table.

For the parental types we can take 4; 4, and 4, 4,. The possible offspring types are then
typified by 4, 4,, 4, 4,, A, A;and A, 4;. Theresulting table is shown as Table P. The covariance,

Tasre P
Parental type -

Offspring p % N

type A A, A A4,

4,4, ° g

4,4, P’q 2e(p+g)

A, 4, - P per

Ay d, 0 rgr

or, as Fisher calls it, the quadratic expression, is then obtained by summing all terms typified by
the above, thus giving

PR+ PR+ ...+ 20%0, Jrat o+ DE(D + ) G% A+ 209010 Jrat - = $5°

counting all the terms in their proper multiplicity.
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* Moreover, from the fraternal table we may obtain & quadratic expression having for its typical terms
301+ p)*if + $0%%, f + P*9(1 + D)%y frp + 2710 o
3pa(1+p + g+ 2p0) % + Pl + 2P) f1z 12 + 20975 12 Far
which, when simplified by removing one quarter of the square of the expression in (XII¥*), becomes
1P*(1 + 2p) i + P70 J1a + 5PG(L+ P +9) Ih + 2T 1 Frws
or, simply, o+ 53

The fraternal table is rather more complicated to construct, We start from Table Q which gives
the possible offspring from all possible types of mating which are 7 in number.

TABLE Q

Mating Frequency Offspring
A A, x 4,4, pt A, 4,
A d;x A A, dp®q 34, 4,+%4, 4,
A A x Az A, 2ptg® A, A4,
A, A x Ay 4, dptqr 34, 4,+44,4,
A Ayx 4,4, ipg® 34,4, +34,4,+34,4,
A, 4,x 4,4, 8pigr 34, 4,434, 4, + 34, 4, +14, 4,
A4, x A, 4, 8pgrs 34, 4,434, 4, + 34 4.+ 14,4,

From this table we can pick out the possible pairs of sibs and their relative frequencies, as given
in Table R, one sib corresponding to the columns and one to the rows.

Tasre R

4,4, A; 4,

il j12
4,4, 4 Y1 +p)® p*(1+p)
4,4, J1z piq(14+p) tpg(l+p+a+2pg)
4,4, J1s pr(l+p) $pgr(1+2p)
Ay 4, Jes pigr $pgr(l+2q)
Az A, iy iptr® pgrt
54, Jaa s $pgrs

To illustrate how these frequencies are obtained consider the case where both sibs are 4, 4,.
This can happen in the first, second, fifth and sixth type of mating and the total frequency is
P =4p¥g+r+.. )+ oM+ 4. ip(gr g+ st
= p'+3p%(1 - p) +1p*(1 - p)* = ip*(1 + ).
(This is more easily obtained by the Li and Sacks method mentioned before.) Adding together all
the resulting terms we get
PP+ P+ @R+ + 3PP + % bt + 0%+ D)oy i+ PP+ D) Jus F -
+2%qris Jos + %480 Jaut -+ E3PG(L+ D+ g+ 209)fT + 30r(L+ P+ 7+ 2pr) s+ .
+29r(1 + 2p)j1g Jis+ Pgs(1+ 2P)j1a Jrat -+ + 2097015 Jag + oo
thus agreeing with Fisher’s sum of typical terms except for his fourth term which should read
Dqriy o3 and nob pgri; fis.
The square of the expression in (XII*) is
A{BYyt Pyt 20g 1+ 2T+ = 0,
and subtracting % of this from the above we get }(x*+ f?) as stated.
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** Here, again, the introduction of multiple allelomorphism does not affect the simplicity of our results; the
correlation between the dominance deviabions of siblings is still exactly }, and the fraternal correlation is
diminished by dominance to exactly one half the extent suffered by the parental correlation. The dominance
ratio plays the same part as it did before, although ita interpretation is now more complex. The fraternal
correlation may be written, as in Article 6,

55 (1 de?).

“18. Homogamy and Multiple Allclomorphism. The proportions of these different phases which are in
equilibrium when mating is assortative must now be determined. As in Article 10, let I, 1,,... be the mean
deviations of the homozygous phases, and J,;,J 15, ... those of the heterozygous phases. Let the frequency of
the first homozygous phase be written as p*1+f1;), and the others in the same way. Then, since p is the
frequency of the first kind of gamete,

Pt afiatifis+... =0,

and Of1et+qfaa+rfost...=0,
and so on.

* Let o+ gl +rF g+, = L,
ot alytrdat... =M,
and so on, then L, M, ... represent the mean deviations of individuals giving rige to gamsetes of the different

kinds; hence, by Article 9, 2pg(1 +1g) = 2pg etV - LM,
that is, Jra=pfV.LM. (XIV#)

The aim of paragraph 15 is to extend the treatment of assortative mating in paragraphs 9-13
to the case where each locus may have more than two alleles, all loci remaining, as before,
unlinked. Since we are concerned with second-degree statistics (variances and covariances) it is
sufficient to consider the loci in pairs.

In the stable population with assortative mating I, L, ... and Jy,, Ji5, ... are taken as the mean
values of the deviations from the population mean of the respective homozygotes 4, 4,, 4, 4,, ...
and the heterozygotes 4, 4,, 4, 4,, ..., with frequencies p*(1 +£,), ¢3(1 +fo3), ... and pg(l+fi5},
pr(1+fs), ete. Then the equations such as -

putafiet...=0

are necessary in order that the gene frequencies amongst all mating pairs should be exactly

P, ¢, etc.
Notice in particular that f,;, fis, ... are not analogous to the fi,, ... used in the previous discus-

sion of assortative mating where there are only two alleles at each locus. The f’s here refer to a
single locus, and when referring to another locus we shall write fi3, f1s, ....
The average deviation of the class of individuals which give rise to the gamate 4, will be
(1/2p) {2p20 + 2pgJ s+ ...} = L, (XTV*q)
to the first approximation, there being further terms involving f’s which we can ignore. By the
type of argument used before we then have

LM
2pq(1 +f12) = 2pgexp {‘“7}

and Sfrz = uLM|V.

The frequencies of 4, 4, and B, B, are 2pg(1 +f,) and 2p’¢’(1 + f1,), and their joint frequency
which we now want to find is written as

dpgp'q' (1 + f1o10)
Or as 4pgp'q (1 + f12) (1 +F12) (1 +fig10)-
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Note that the absence or presence of a dash on f;, means that f;, refers to 4,.4,, and f1, to
B, B,, whilst on the other hand f5, and f1, 15 both refer to both factors together, the difference
being in their definition. Since the f’s are all small we expand the products and neglect small

term , btaini ' ’
5 OblaIning J1212 = fra+fia 12100

In the absence of any assortative mating the gametic frequency of A, B; would have been pp’,

but when g + 0 the proportionate increase, using the definition of f1, ;,, etc., must be
PP P9 P st + @0 flan 90 1212+ @ fla+ -
+ Tp’fis’]_]_ +...= Fll’ by deﬁnition.

Thus the frequency of 4, B, in the gametes is pp’(1 + F},). The mean value of individuals giving
rise to this gamete is L+ L' by the argument leading to (XIV*a) and so on, so that (XIX*)
follows. In this equation the #’s are functions of the f,,,, ete., which are known when the

frequencies p, p’, ... are given, and we want to solve for the f;, 5, etc.
Fisher guesses that the solutions must be

Sieae = (W V) (L+ M) (L' + M)
and similar formulae. Putting these in the equation for Fy, we get
(] V){pp'(2L) L") + pg' QLY (L' + M') + ... +-qp"(L + M) (2L)
@ (L+MY(L'+ MY+ ... +rp'(L+ N)(2L) + ...}

= (u/VV{L+pL+qM+ . ML +pL' +qM' + ...}
= (WV)LL,
since pLb+gM+...=0, pL'+qM'+..=0.

* The association between the phases of two different fuctors requires for its representation the introduction
of association coefficients for each possible pair of phases. Let the homozygous phases of one factor be
numbered arbitrarily from 1 to m, and those of the other factor from 1 to n, then, as the phase (12) of the first
factor oceurs with frequency 2pg(1 4 f,,), and of the second factor, with frequency 2p’¢’(1 +f,), we shall write
the frequency with which these two phases coineide in one individual as 4pgp’g’(1+f; 15), Or as

dpgp'q’ (1 +f10) (L + £} (1 +fig.10h
50 that Srae = frzoae+ et Fla
“ The proportional increass of frequency of the gametic combination {1.1) is
P PONPR S 713 MU I ~af PP SOUNE ¢/ ) MAPE -/ M o6 TS SO
and so on.
*“ By virtue of the equations conneeting the f’s of a single factor, this expression, which we shall term F,,,
has the same value, whether written with dashed or undashed f’s.

“ Individuals having the constitution (12.12) may be formed by the union either of gametes (1.1} and (2.2),
or of gametes (1.2) and (2. 1); hence the equations of equilibritm are of the form

2fts 0y = I+ Fog+ (e VI(L+ L) (M 4+ M)+ Fiy + oy + (pf VI{L 4 M) (M + L),

but 2f12.10 :2f{2.12—2f12“2f1’2
= 21y 10— (20 V(LM + L/ M),
therefore 2izae = Byt o+ By + oy + (0 VHL+ M) (L' + M) ' (XIX*)

*“ By analogy with Article 12, the solution
Sra.1a = @V (L+ M) (L' + M)

suggests itself, and on trial it leads to Fy = (@/V)LL,
and is thereby verified.”
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To obtain L we argue as follows. Write the mean deviation of the homozygote 4, 4, from the
population mean as I, = i, +if where i, is the deviation due directly to the genotype 4, 4, if the
other genes were segregating independently of the 4 locus. ¢} is then the extra deviation produced
~ by the other genes in virtue of the association due to homogamy. The homozygote 4, 4, has

frequ
auency PA(L+fy)

and the double homozygote 4, A4, B, B; has frequency
P21 +f1) (L +f10) (U +Fig, 1)

From this it follows that the conditional probability that an individual is B, By, if it is known
thatitis 4, 4,1 ' '

AILIS £1 40, 18 PHIH ) L+ fig, 1)
which to a reasonable approximation can be written as

PL+[ 1+ 0
Similarly, the probability that an individual is B, B, when it is known that it i3 4,4,, is
i t ]. L r

Approximately ¢ (L +fia+fis,10)

The total additional contribution of the individuals at the B locus to the measurement of 4, 4,
individuals is therefore

P+ ) i+ a2 A+ foa ) tot o +20°C (L +fla Hfinan) i+
We have already defined the effects 4,, j., in such a way that the mean effect is zero, i.e. so that

PP+ )it A2+ fra) et = 0.
Thus the additional increment is simply

Pttt 200 i fat oo

We now consider the sum over all loci other than the 4 locus and we denote this summation
by the symbol Z. We get

L=+ + 300 i+ + 20 52 Jlot -}

and similarly Ji2 = fro+ Z{p o t1+ .- + 20 fraaz 12+ - b
the factor 2 occurring to include two terms of equal value.
Write . . .
l = p31+”12+?’313+ cave
Then

L=ph+qhs+...
=1+ Z{p% (funp+fiand+. )+ .+ 200 fir 22 Hfr21ag+ ) .01

Using the values of the f’s which we have found above, and
pL+qM+...=0,
we get Juup+fieng+... =@ V)yL2L),
and similarly S+ fisreg+... = @/ V)L + M)
(these results being misprinted in the text). Using these we get finally
L =1+ (uL{ V) S{(@L) 9%} + ...+ 2L + M) D' fig + ...
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Since l’ = p"l‘;i + quiz +...
this can be written L=+ uliVYE2p L +2¢'m' M +...}.

Since each individual locus is regarded as contributing a vanishingly small component of the
total variance we can now suppose the summation to be taken over all factors at all loci and not
merely all those other than the locus being considered. We can then put L = I+ AL, where

A = (uV)SEPTUL +2g'm M +..}.

Since A is independent of the locus being considered, we also have

L'=U+4L,
so that '=(1-A)L,
and then A(l—A) = (g/TYZ(Q-A) (2p'TL +...)
= (u/VYZ(2p' 1'%+ 2¢'m2+...)
= WP (XXII¥)

In a similar way substituting for the f’s in the formulae for 7 and Ji,, and then putting
L = 11— A4), ete. we get

. 2 i TETd L r LAY
I = a1+?6{f:4—)~2{4p B 4+ 20U+ ) fig

241

=t g

o . 2 Fi ey r_r ! ! -
and s =312+V-(—1£L—A—)—2{2p 2I+m) iy + ... + 4p'g G+ m) (U + )i+ ...}
.4
=312+I_—'A(l+m)-

* Henice we may evaluate L, L/, ...,for

L =pl +qJyg+rL5+... +l=E{p% (pfy u+fint ---)'|'219’9”.7.1'2(}2)”11.12+‘_1f12.1z+ L PP

but Pt efeat...= @/ V) LI+ M),
therefore L=14+(p/VYLE{p" (L' + L")+ 2p°qf (L' + M) + ...},
=14 {p/VYLE(2p VL + 29’/ M’ . .).
“Let L=Il4+ AL,
then L=1j(1-4),
and A= (u/V)E2pTL +2¢'m M’ +...),
therefore A(l—A) = (p/V)E(2p T2 4 2g'm"? +...)
={p/V)ZF,
therefore A(l—A) = (ufV)r2 (XXII*)

so that the association constant, 4, appearing now in the constant ratio I: L, plays exactly the same part in
the generalised analysis as it did in the simpler case.
* It may now be easily shown that the mean deviations, I and J, may be calculated from the equations

I, =i, + 2411 - 4), }
and Jyg = g H[A/(1 — AY] (F+m),

and that the variance reduces, as beforse, to
ot [A)(1—A)] 7% (XXV*)

(RXIV*)
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*16. Coupling. In much modern Mendelian work coupling plays an important part, although the results of
different investigators do not seem as yet to converge upon any one uniform scheme of coupling. The type
found by Morgan in the American Fruit Fly (Drosophila) is, however, of peculiar simplicity, and may be found
to be the general type of the phenomenon.

* Anindividual heterozygous in two factors may ows its origin to the union of either of two pairs of gametes

either (1.1) x {2.2) or (1.2) x (2.1); when coupling ocours, the gametes given off by such an individual, of all
these four types, do not appear in equal numbers, preference being given to the two types from which the
individual took its origin. Thus in a typical case these two types might each occur in 28 per cent of the gameteos
and the other two types in 22 per cent. Coupling of this type is reversible, and occurs with equal intensity
whichever of the two pairs are supplied by the grandparents. We may have any intensity from zero, when each
type of gamete contributes 26 per cent to complete coupling, when only the two original types of gamete are
formed, and the segregation takes place as if only one factor were in action.
~ The above analysis of polymorphic factors enables us to compare these two extreme cases; for there are
9 phase combinations of a pair of dimorphic factors, or, if we separate the two kinds of double heterozygote,
10, which, apart from inheritance, can be interpreted as the 4 homozygous and the 6 heterozygous phases of
& tetramorphic factor. The 4 gametic types of this factor are the 4 gametic combinations (1.1), (1.2), (2.1),
2.2).,” . :

This mapping of a system with two factors at each of two loci on to a system with four factors
at a single locus is particularly interesting and can be illustrated as follows.

Suppose that at the first locus the two factors denoted by 1 and 2 in the text are 4, and 4,,
and similarly B, B, at the second locus. The nine phase combinations are then

A A, BB, A, 4,B,B, A,A,B,B,
A,4,B,B, A,4,B,B, A,A4,B\B,
A, 4,B,B, A4,4,B,B, A,4,B,B,.

When linkage (‘coupling’ is Fisher’s term) is considered the double heterozygote 4, 4, B, B,
really corresponds to two different heterozygotes according as whether 4, and B, are on the same
chromosome or on different chromosomes. We shall denote these two types by (4, B,) (4, B,) and
(4,B;) (4, By).

Now consider a single locus with four factors Cy, C,, C; and C}. This results in four homozygotes
and six heterozygotes. If we identify the four factors Cy, G, €, and () with the pairs of factors
4, By, A; B,, A, B, and A, B, respectively we have the following mapping of the two loci situation
on the single locus situation.

A A, B B, C,0, (4, B,)(4,B) 0,0,
A4,4,B,B, ¢, C, A, A4,B,B, 0,0
A, 4,B,B, 0,0, A,A,B, B, C,C,
A, A,B, B, ¢, C, A,A4,B, B, .,
(4, B)) (4, By) GG Ay Ay By By Ci Gy

Thus to deal with linkage Fisher considers the two possible extreme cases of no linkage and
complete linkage when there is assortative mating but, as above, no epistatic effects.

Case I. Here we have two unlinked loci with 4,, 4, at one, and B,, B, at the other. These have,
as usual, gene frequencies p, ¢, p’, ¢', respectively, and as before the coefficient of assortative
mating is #. The mean deviations associated with 4, 4,, 4, 4,, 4, 4, are again s, j, k,and ', 5', k" .
for the other locus.

Let L be the mean deviation produced in the population by a gamete carrying 4,, and define
M, L', M', simjlarly. Thus the mean deviations associated with gametes 4,B,, 4, B,, A, B,,and
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Ay, B, are L+ L/, L+ M’ (not M+ M’ as in Fisher), M+ L', and M + M’. By the theory given
above the frequencies of these four gametes are

pp' {1+ VYLL},  pg'{l+(p/V) LM},
gp'{1+ (u/VYML},  q@'{l+(u/V) MM}

These are denoted by Fisher as p, q,r,s.
The frequency of a double homozygote like 4, 4, B, B, is, by the previous argument,

P L+ fi11) = 2021+ 1 i)
approximately, where
' =LAV, fiu=pL?V, fu=4pLL|V.

Thus to this order of approximation the frequéncy of A, 4,B, B, is
D1+ (] V) (LA + L2+ 4LL'Y} = {pp’ (L + () V) LL WP {1+ (uf V) (L + L),

Case 11, If there is complete linkage the four pairs 4, B,. A, By, 4, B,, 4, B, each behave like
a single gene. We suppose they each have the frequencies given above as p,q,r,s. We also
suppose that the deviations produced by these ‘genes’ are the same as occurred in the previous
case 50 that, for example, a zygote 4, 4, .5, B, would have the dev1a,t10n t+4’, the genes at any
other loci being held fixed. '

We must first investigate whether the genotypic frequencies in the second case will be the same
as in the first. If there is no assortative mating (4 = 0) this is obviously true since the frequency
of 4; A, B, B, in the unlinked system will be (pp’)? which is the square of the frequency, pp’, of
the ‘gene’ A, B, in the linked system. :

We have also seen that assortative mating changes the frequency of gene combinations at any
pair of loci only by a quantity of the first order of smallness. Thus to this degree of approximation
the ‘genotypic’ frequencies should remain the same.

The mean deviation in individuals carrying the gamete 4, B, will then be the same in both
gystems. This is L + L’ which Fisher writes as a capital L. The similar result holds for the other
gametes.

The variance, ¥, in the population in the two cases should also be the same.

Then treating 4, B,, ete., as single genes the frequency of a genotype such as (4, B,) (4, B))
will be, to the first order of approximation,

P*{1+(w/V)LP = {pp'(1+ () V) LL )P {1 + (0] V) (L + L)%,

which agrees exactly with the result obtained in Case I above. Thus to this degree of approxima-
tion, which is as far as Fisher goes in his theory, the two systems of completely unlinked and
completely linked genes agree as regards the frequencies of occurrence, the magnitudes of the
effects produced by genes and gene-combinations, and the effect of assortative mating.

Fisher does not explicitly prove that the correlation between relatives will be the same in the
two cases. To show this it is necessary to show that the values of 72 = £§2 are equal since the
correlations will be later expressed in terms of 72, V, p, and A4 (4 being given by equation (XX1I))-

To prove this we return to the original definition of #2. To simplify the notation denote the mean
deviations ¢, j, k produced by 4, A;, 4, 4,5, A5 A3 bY j11, 512 = Je1» J2s (notice the change in notation
from Fisher’s use of these symbols). We shall also write the gene frequencies p, ¢ of 4, 4, as



46 COMMENTARY ON FISHER

1, Py As before we proceed by fitting ‘representative values’ for which we shall abandon Fisher’s
notation ¢+ b, ¢, ¢ —b, and write instead

Representative value for 4,4, =, +x,,

where 7, s = 1, 2. These values are to be found by least squares. Neglecting the small changes in
frequency due to assortative mating we have to minimize the sum

Sl = z?rps(jrs — &, — xs)zs
which is equal to P37 —c—b)2 4+ 2pg(F —¢)® + ¢*(k — ¢ + b)?
in Hisher’s notation. The conditions for a minimum are that

108, .
Q% = %ps(.?ra“"xr_ws) = 0.

£ is then defined as the variance of the representative values so that
£ = p*®+ 2pqj® + g7 — (p% + 2pqj + ¢°k)?
= Zp, Psl@, +25)* — {20, Dol + )}
= 2(Zp,a}— M?),
where M = Zp,x,.
The same argument applies if we have multiple allelomorphs 4, (r=1,...,%), and a similar

definition applies to the alleles at the second locus for which the representative values, #] + «;, are

the solutions of U
€ solutions O Zps(.?rs'"%""ws) =0,
-

Now consider the system with complete linkage so that the ‘alleles’ are (4, B,). Since thereisno
epistacy, the mean deviation produced by 4, .4, B, B, is j,; +ju. all other genes being fixed. If we
neglect the small deviations in frequency produced by assortative mating we can find a ‘repre-
sentative value’, z,,, for the ‘gene’ (4, B,) by minimizing the sum

Z.’p'rps:p; P:L(jrs +jm — Ty xsu)z'
The conditions for this are, by differentiating,

2 %1 ps.pu(jrs +jtu . xsu) = 0.

The solution of these equations is simply ,, = ,+x; as can be verified by substituting these
values and using the previous equations for ,, 7.
The new value of 2 for the system with complete linkage is
B = 28p, (@, + %) — A Zp, pi (@ + )}
= 2Zp; Zp,a} + 2, @, Tp; v; + Ip, Tl #° — (Zp; Tp, @, + Tp, 2py #1)%)
= 2{Zp, 2} + 2M M’ +Zp) > — (M + M%)
= 2Zp, 22— M2+ Zp 2 — M'?}
= 2+ p
Thus in the sum 72 = 42 the two terms £2 and £'2 which occur in the system with unlinked
genes are replaced by a single term £"2 in the system with complete linkage, but by the above
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equation the value of 7% is unchanged. Thus, as will be shown later, the correlations between
relatives are unaffected.

Fisher does not consider what happens with values of the recombination fraction lying between
0 and }, and he seems to imply that because there is no important difference between the extreme
cases of no linkage and complete linkage it is highly probable that the same results will be obtained
for such intermediate values. l

However, there are serious gaps in the argument to be filled before this is demonstrated. It
might be thought that a population in which the recombination value was inside the interval
(0, %) could be regarded as a mixture of two populations in one of which linkage is absent and in
the other in which it is complete. Simple calculations show that this is not correct.

When linkage is complete the gene combinations, (4, B,), can be regarded as single genes and
there are no restrictions on the frequencies which can be assigned to them. In particular we can
suppose, as above, that (4, B,) has frequency p,ps(1+ F,,). But if linkage is not complete the
frequencies of gene combinations are determined by the properties of the system and can no
longer be chosen at will. It is therefore of interest to show that the frequency of A, B, can still be
taken as p, p; in a stable population.

When the mating is not assortative, and F,, = 0, this is well known. It can be proved for
assortative mating in the following way. Suppose first that the two loci are unlinked. Then
- a double heterozygote, 4, 4, B, B, can arise in two ways, Either 4, B; comes from one parent
and 4, B, from the other (call this ‘ coupling’), or 4, B, comes from one, and 4, B, from the other
{‘repulsion’). The frequencies of 4, B, and 4,8, are

pp'(1+ Fy) = pp'{1+ (uLL'[V)},
and qq' {1+ (pMM'[V)}.
The average deviation of individuals giving rise to 4, B, is L + I/, and that of individuals giving

rise 4,B,is M + M'. If there was no assortative mating the probability of such a pair of gametes
would be the product of their frequencies. However, with assortative mating this product has

to be multiplied by exp [(#/V)(L+L") (M+ M),
which can be approximated by
L+ (pf VY L+ LY (M +M).
Thus with assortative mating the total probability of such a pair of gametes is
op'eq {1+ (V) [LL' + MM' +(L+ L") (M + M")}}
= pp'gq" {1+ (p/V) (LM + L'M' + (L + M) (L' + M"))}.
By symmetry we get the same probability of a union between A, B, and 4, B, so that coupling
and repulsion are equally frequent.

Suppose that we have a stable population in which there is no linkage, and instantaneously
linkage isintroduced with recombination fraction c where 0 < ¢ < %. Inthe immediately following
generation the only effect which could oceur would be a change in the proportion of offspring of
double heterozygotes. From a double heterozygote in coupling we get gametes in the proportion

${1—c}d; By +304, By+ 304, By +3(1—c) 4, B,,
and from one in repulsion we get:
ted; By +#(1—c) 4, By + 4(1—¢) A; B+ §c4, B,
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Since coupling and repulsion heterozygotes have the same phenotype, they have the same
probability of mating with any particular genotype, and since coupling and repulsion are equally
frequent, the gametes produced by all heterozygotes will have frequencies which are the averages

of the above frequencies, i.e. 314, B, + 34, By + 34, B, + 14, B,,
which is just what happens if ¢ = }, i.e. when there is no linkage.

Since the introduction of linkage has not changed the frequencies in the next generation the
population remains stable in all further generations.

The same argument can be used to show that the parent—offspring correlationis independent of
the recombination fraction. It does not show at once that the same is true for sib—sib and more

distant relationships but this is plausible. Fisher does not discuss these more complicated cases
in his paper and we do not pursue the matter further.

** The mean deviations associated with these 4 gametic types are L+ 1L/, M+ M’, ..., and we therefore write
L=L4+L, M=L+M, N=M+IL, O=M+M.

“ Further, if these gametic types occur with frequency,

p=pp{l+(u/V)LL}  q=pg{i+(p/V)LM"}

r=gp{l+u/V)ML} s=qq{1+u/V) MM},

it is clear that the frequencies with which the homozygous phases oceur, such as
P L+ .0) = PP {1+ (p/ V) (L2 + L2+ 4LL}},
{1+ (u/V) (L+ L)% = p*(1 + (u/V)LA),

are exactly those produced, if there really were a single tetramorphic factor,
**In the same way the phases heterozygous in one factor also agree, for

2p°0°¢ (V111 0) = 20°P° {1 + (f V) LA+ L/ M’ + 2L(L + M7))}
= 2pq{l +{u/V){L+L)(L+ M)} = 2pgfl +(#/V)LM}.
“ Finally, taking half the double heterozygotes,
2pgp’q’ (L +f1y 10) = 2pgp’q" {1 + (g V) LLM + L'M' + (L + M) (L' + M')]}
2ps{l+(u/ V(L + L) (M + M')} = 2ps{l +(p/V)LO},
or, equally, 2qr{l + (4] V) (L+ M) (M + L)} = 2qr{l +(#/V) MN}

“From this is appears that a pair of factors is analytically replaceable by a single factor if the phase
frequencies be chosen rightly: but the only difference in the inheritance in these two systems is that in the one
case there is no coupling, and in the other coupling is complete. It would appear, therefore, that coupling is
without influence upon the statistical properties of the population.”

¥isher now considers the correlations between individuals in a population in which there is
assortative mating and environmental effects. To do this he uses regression theory. Suppose all
measurements are taken from the mean of the population. Let x be the measurement in one
individual and X in another. The correlation between x and X is then

p = cov (z, X) {var (x) var (X)} %
= cov (x, X)/V.

We suppose so many factors are acting that the joint distribution of  and X is bivariate normal
s0 that the regression lines are straight. Then the expected value of X for any given z is

E(X |givenz) = fz = px and p=2z1E(X|givenx).
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Fisher tacitly supposes that the effects of environment can be represented by an addition to the
measurement which is independent of the genetic value so that there is no ‘interaction’ between
genotype and environment. This ‘environmental deviation’ is supposed to be normally distri-
buted with zero mean and constant variance, and is not correlated among relatives. Then,
measuring from the mean, we can write

z = observed value
= g {genetic value)+ environmental effect

= z (representative value) + dominance deviation +environmental effect.

These three terms, the first two of which are sums over the various loci, are mutually uncorre-
lated. Thus with a large number of loci, the joint distribution of (z, , 2) is trivariate normal, with

z (representative value), y—z (dominance deviation), and z—y (emnronmental effect) ali
statistically independent. It therefore follows that

cov{z,y)=var{y)=V
cov (x,z) = cov (y,z) = var (z),
var (z) = var (y) + var (),

where 7 is the environmental effect.
Thus for the regression coefficients we find

byy=byo=b, ,=1.

V.2

Then an increase 8z in the representative value will on the average increase both the genetic
component y, and the observed measurement z, by dz. This is also evident from the above
decomposition, '

Thus we have cov (2 ) | var (y)

var(x)  var(z)’

v = G (say) =

var(z)  7®

and, using (XXVIb&), b,y = €q (saYy) = var(y) o°—de’

- Now let z, y, z be the values for a father, and X, Y, Z, the corresponding values for his son.
The regressions of the valves X, ¥, Z, on z, y, z will arise in two ways. In the first place, the
partial regression of Z on z, keeping the mother fixed, will be } (from the table in section 5).

The dominance deviations (y —z), (¥ — Z), and the environmental effects (x—y), (X — Y, are
uncorrelated with each other and with z, Z. Thus it is easy to find the regressions of anyof X, ¥, Z,
onany of z, ¢, 2.

However, there is a second indirect component of regression arising from the fact that the son’s
Z is correlated with the mother’s representative value, which isin turn correlated with the father’s
because of assortative mating. Fisher now finds this extra component of regression under three
different hypotheses about the nature of assortative mating, namely that the underlying
association is between (1) the observed characters x; (2) the genetic components y; (3) the repre-
sentative values z.

Notice that he now uses g for the observed correlation between the « values, whereas in the
previous discussion it was the correlation between the y’s.
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“17. The effects both of dominance and of environment may be taken into account in caleulating the
coefficient of correlation: if we call x the actual height of the individual, y what his height would have been
under some standard environment, and z what his height would have been if in addition, without altering the
extent to which different factors are associated, each phase is given its representative value of Article 5. Then,
since we are using the term environment formally for arbitrary external causes independent of heredity, the
mean z of a group so chosen that y = # for each member will be simply £, but the mean y of & group so chosen
that » = ¢ for each member will be ¢, ¢, where ¢, is a constant equal to the ratio of the variance with environment
absolutely uniform to that when difference of environment also makes its contribution. Similarly for the
group z = f, the mean value of ¥ is £, but for the group y = # the mean z is ¢y ¢, where

2

Cp = m . (XXVII)
“ Now, we may find the parental and grandparental correlations from the fact that the mean z of any
sibship is the mean z of its parents: but we shall obtain very different results in these as in other cases,
according to the interpretation which we put upon the observed correlation between parents. For, in the
first place, this correlation may be simply the result of conscious selection. If the correlation for height stood
alone this would be the most natural interpretation. But it is found that there is an independent association
of the length of the forearm:* if it is due to selection it raust be quite unconscious, and, as Professor Pearson
points out, the facts may be explained if to some extent fertility is dependent upon genetic similarity, Thus
there are two possible interpretations of marital correlations. One regards the association of the apparent
characteristics as primary: there must, then, be a less intense association of the genotype ¥, and still less of 2.
The other regards the association as primarily in % or 2, and as appearing somewhat masked by environmental
effects in the observed correlation. In the first place, let us suppose the observed correlation in x to be primary.”

In the discussion below, assuming this first interpretation of marital correlation, if one parent
has the value z = ¢, the children will have the value

€1 €y —l—iz-ﬁt

1+
and not €10y 9 £

as misprinted in the paper. The remainder of the formulae follow.

* Then if g is the correlation for z, ¢, g will be that for y, and this must be written for g in the a,ppiica’olons
of the preceding paragraphs. Hence A= oyoup
Rt T ¥ ud 4

and g, ¢, 4 and A are the marital correlations for z, y, and z.
* Sinee the mean z of a sibship is equal to the mean z of its parents, we may calculate the parental and

grandparental correlations thus: for group chosen so that # = #: mean y, § = ¢, #; mean 2,z = ¢; ¢,¢; ¥ of mate
is ut; z of mate is ¢, ¢, uf. Therefore 2 of children is

1+u
¢ ¢
102
“ Hence, since there iz no association except of z between parents and child, the parental correlation
coefficient is 1+
€105

Now, since we know the mean z of the children to be

+#

€1 Gy t,

. . 1+
the mean z of their mates 1s 16y 2’“ At,

* Pearson and Lee, ¢ On the Laws of Inheritance in Man.” Biometrika, 2, 374.
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and the grandparental correlation coefficient will be

Similarly, that for the (n+ 1)th parent will be

14+p {14437
oyt (57

giving the Law of Ancestral Heredity as &-necessa.ry consequence of the factorial mode of inheritance.
**18. If we suppose, on the other hand, that the association is essentially in y, the coefficient of correlation
between ¥ of husband and y of wife must be g/fe, in order to yield an apparent correlation g, Also

.r?.
6y = ————
P g, —Ae?’

and A= Con

%

4 is the observed correlation of #’s. If the structural correlation occurs in the y’s, it must there-

fore have value ue; so that 4 = eyluei) | .

and the argument proceeds as before.

* The parental correlation found as hefore is now

¢ e+ Ae
2
and the higher ancestors are given by the general form

¢ et de (144747
2 2/’

although A is now differently related to ¢,, ¢, and .

“In the third case, where the essential connection is between z of husband and 2z of wife-—and this is a
possible case if the agsociation is wholly due to selective fertility or to the selection of other features affected
by the same factors—the equation between the correlations for y and z is changed, for now the marital
correlation for y is equal to A¢, when we retain the definition

1-2
Cp == —0———=.
2T g2 Aet

**Hence also g = Ac, e,
and the correlation coefficients in the ancestral line take the general form
14+ A\t
€10 (T) .

19, On the first of these theories & knowledge of the marital and the parental correlations should be
sufficient to determine ¢, ¢,, and thence to deduce the constant ratio of the ancestral coefficients.
Thus for three human measurements:

Stature Span Forearin
L 0-2804 0-1989 0-1977
P 0-5066 0-4541 04180
¢, Cy 0-7913 07576 0-6980
A 0-2219 0-1507 0-1377
H14+4) 0-6109 0-5753 0-5689

These figures are deduced from those given by Pearson and Lee (loc. ¢it.), neglecting sex distinctions, which
are there found to be insignificant, and taking the weighted means.”

4 M&S
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In the table above, & is the observed correlation between mates as taken from Pearson and Lee,
and p is the observed parental-offspring correlation. We then find ¢, ¢;, 4, and (1 4 4) from the

formulae
1+
p= 0102‘_2£’ A = o 051

 These values for }(1+ 4) agree very satisfactorily with the two ratios of the ancestral correlations which
have been obtained, 0-6167 for eye colour in man, and 0-6602 for coat colour in horses. It is evident that if we
also knew the ratio of the ancestral correlations for these features, we could make a direct determineation of
A and ascertain to what extent it is the cause and to what extent an effect of the observed marital correlation.

* 20. The correlations for sibs, double cousins, and more distant relations of the same type, in which all the
ancestors of & certain degree are commmon, may be found by congidering the variance of the group of collaterals
deseended from such ancestors. The variance of a sibship, for example, depends, apart from environment, only
upon the nurnber of factors in which the parents are heterozygous, and since the proportion of heterozygotes
is only diminighed by a quantity of the second order, the mean variance of the sibships must be taken for our
purposes to have the value appropriate to random mating,

Ir2 4+ 36% = 2V [2ey(1 — A} 4+ 3(1 —¢3)]

plus the quantity (V/e,)— V due to environment. But the variance of the population is ¥/e;; and the ratio of
the two variances must be 1 —f, where f is the fraternal correlation. Hence

F= e (1 46,4+ 2c,4).7

Still assuming the first model of correlation basically between the «’s, we have to find the
‘variance of a sibship’. We imagine the number of individuals in a sibship indefinitely increased,
and then the #’s of the resulting individuals will have a distribution with mean m,, say, and
variance v,. Both of these will depend on the genetic character of the parents. The observed value,
2, of & random sib from a random sibship may be decomposed into two parts as

x = mg+ (x—my),
where x and m, are both random variables. Since in any one sibship we have
| E(z—my) =0,
by definition, we also must have E{m x—my )} =0
within each sibship, and therefore in the whole population. Thus m, and (& —m,) are uncorre-
lated. From this it follows that
var () = var (m,) + var (x —m,),
= ¥, 8aY.
Here var (x —m,) means the mean value of (x — m,)? taken over all sibs in all sibships. Itis therefore
the mean value of v, taken over all sibships and can be written as v,. Then
var (mg) = v, —7,.
If z, X, are the measurements of a random pair of sibs from a random sibship,
cov (¢, X) = cov (my+ {x —my}, my+{X —m})
= var (my)
= Uy, — Vg
Thus the sib—sib correlation is

cov (z, X) R

= T @yver (00}~ oo~ vy

o=
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This can be written 3, = (1—f) o,

The variance, v,, within any sibship depends only on segregation within that sibship and
therefore only on those genes for which the parents are heterozygous, since if the parents are
homozygous the effect is to make a constant addition to all sibs alike. But the frequencies of
heterozygotes at any locus are affected by assortative mating only by a small quantity so that
the variance within sibships will be changed by a proportionally small quantity. Thus 7, can be
taken, nearly enough, to have its value for random mating, although var (m,) will have to be
changed.

If there are no environmental effects, and no assortative mating, the correlation between the

sibs is 72 4 L
20?
Thus the covariance between sibs is 312+ €2,

which will be unaffected by any environmental effects which are such that they are uncorrelated

in the sibs. We also have A
V =var(y) = o+ T2
1-4
= 724+e2 4+ 7 fAT2’
72 1-2

2T E e T Ay (1< A)e

Solving these equations for 72 and 62 we get
72 = Veg(1—4), €= TV(l—g,)
From these we have
cov (%, X) = 7% + 12
= 3V{2,(1 — 4)+3(1 —¢,)}.
We also have ¢, = var (y)/var (x) = Vo1,

and substituting in the formula for f we get Fisher’s result.

For double cousins we argue as follows. At any one locus each member of a double cousinship
may be regarded as having one gene chosen at random from the four carried by his father’s
parents, and one chosen at random from the four carried by his mother’s parents. The variances
of the cousing within the cousinship will depend only on the dissimilarities within each of these
two sets of four genes, and therefore by the same argument as before, will be almost independent
of assortative mating.

Let x and X be the observed values of the two double cousins, and f the correlation between
them. The variance of the population, and therefore of x or X is Ve %, and the variance due to
environmental effects is Ve;* — V. Then the variance of  — X must be

Elx—-X)?2 = 2Ver Y1 —f)
on the one hand, and B(w—X)? =2V (71— 1)+ 202 — }r2— ke?)

on the other, because the correlation between the genetic components for double cousins is

known to be 1 .
o2 e,

Thus the second term above is the genetic component of variance.
4-2
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Putting o2 = 72+ €2, and substituting for 72 and €%, we get
VerH(1—f) = Vieg' ~ 1)+ Vi{fex(1 - A) + (1 —co)}s
so that 1—f=1—c¢,+c eyl —A)+130,(1—cy),
and J = ex{de + Tgra + §A0o}.

* In the same way, the variance for a group of double cousins is unaffected by selective mating, and we find
the correlation coefficient for double cousins to be

Hze {1+ 3+ 12¢, 4),

showing how the effect of selective mating increases for the more distant kin.
* On the first hypothesis, then, we must write,

_ . T4 u
l"“c_l“‘é;! P=6t—5
and J=1e{l+0y(1+24)})

“ 21. Weghall use this formula for the fraternal correlation to estimate the relative importance of dominance
and environment in the data derived from the figures given by Pearson and Les.
* Agsuming as the observed correlations

Stature Span, Cubit
i3 , 0-2804 0-1989 0-1977
P 0-5066 04541 0-4180
I 0-5433 0-53561 0-4619
we obtain as before
€y Cy 0-7913 01575 0-6980
A 0-2219 0-1507 0-1377
and caleulating ¢, from the formula ¢ = &f—cy0,(1 +24),
we obtain the three values 1-031 1-155 0-957

with a standard evror of 0-072, and a mean of 1-048.”

Presumably by ‘standard error’ Fisher means ‘standard deviation of the observed values’.
However, this is not clear; the standard deviation based on two degrees of freedom would be
0-100, not 0-072 and the standard errors in the next table also do not agree. It is not clear what
precisely is in Fisher’s mind here. He does all his calculations to three or four decimal places.
But he does not give any indication of the accuracy of the correlations on which his calculations
are based, other than the ‘standard errors’ quoted from time to time. These do not seem to be
standard errors in the sense of the term most used nowadays, namely, the standard deviation
of the estimate to be expected in repeated sampling. The text suggests that the three values of ¢;
for respectively stature, span and cubit were looked upon as if they were three estimates of
some ‘ideal’ or ‘true’ value of ¢,, differing from this only by random fluctuations.

** This relatively large standard error, due principaily to our comparative ignorance of the fraternal corre-
lations {errors in g have scarcely any effect, and those in p are relatively unimportant), prevents us from
making on & basis of these results a close estimate of the contributions to the total varience of the factors
. under consideration.
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“ Remembering that ¢, is intrinsically less than unity, the second value is inexplicably high, whilst the firgt
and third are consistent with any value sufficiently near to unity. The mean of these results is materially
greater than unity, and therefore gives no support to the supposition that there is any cause of variance in
these growth features other than genetic differences. If this is so, we should put ¢, = 1, and compare the
observed values of f with those calculated from the formula

4f = L+4e (1 +24).
“* With their standard errors we obtain

Standard

Stature Span Cubit error -
Observed 0:5433 0-5351 0-4619 -016
Caleulated 0-5356 0-4964 0-4726 0-008
Difference —0-0077 —0-0387 +0-0107 0-018

*'The exceptional difference in the fraternal eorrelations for span might, perhaps, be due to the effects of
epistacy, or it may be that the terms which we have neglected, which depend upon the finiteness of the number
of factors, have some influence. It is more likely, as we shall see, that the assumption of direct sexual selection
isnot justified for this feature. Accepting the aboveresults for stature, we may aseribe the following percentages
of the total variance to their respective causes:

% %
Ancestry b4
Variance of sibship:
72 31
36 15
Other causes
46
100
Apain it may be divided:
Genotypes (o?):
Essential genotypes (%) 62
Dominance deviations (¢?) 21
: 83
Association of factors by homogamy 17
Other causes —
100

“These determinations are subjech, as we have seen, to considerable errors of random sampling, but our
figures are sufficient to show that, on this hypothesis, it is very unlikely that so much as 5 per cent of the total
variance ig due to causes not heritable, especially as every irregularity of inheritance would, in the above
analysis, appear as such a cause.

“ It is important to see that the large effect ascribed to dominance can really be produced by ordinary
Mendelian factors. The dominance ratio €2/o?, which may be determined from the correlations, has its numerator
and denominator composed of elements, 4% and «2, belonging to the individual factors. We may thereby
ascertain certain limitations to which our factors must be subject if they are successfully to interpret the
existing results. The values of the dominance ratio in these three cases are found to be:

Standard
Stature Span Cubit error
Dominance ratio 0-253 0274 0-336 0-045

92, The correlations for uncles and cousins, still assuming that the association of factors is due to a direct
selection of the feature #, may be obtained by the methods of Article 14, using the two series already obtained:

that for ancestors . 1 p (L+A\
1€y -"2 ) H

and that for collaterals, like sibs and double cousins, which have all their ancestors of a certain degree in
common, polL+ o1+ 24)],

facy[1 4+ 3cy(1+44)],
and so on.
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* Thus if a group be chosen so that x = £,
7 of group is ¢, ¢,
2 of group is ¢, cat,
+4

1
z of sibs is ¢, a5~ ¢,

also ¥ of sibs is fe,[1+e5(1+24)]¢,
7 of aibs mates is }¢,[1+ {1+ 2A4)] oy i,
% of siby mates is }e,[1 +¢,{1+24)] 4¢.
Hence % of nephews is Jo,[2c,{1 + A) + {1+ c,{1+24)} A]4,
2
giving the correlation €1 Cy (li:;i) +ie, 4(1 —gy).

‘* Again for cousins, if a group be chosen so that z = ¢, we have

2
¥ of uncles is [61 Cy (IZA) +§01A(1—c,):| Z

= . 1+.4)\2
Z of unecles is ¢, ¢, )

= . 1+.43\*
and Z of uncles mates is | ¢ ¢, —5 +ie; A(l—cy) [ AL,
A\? .
hence z of cousins is I:c1 Cy (1%) +3%0 A%1 -cg):| Z,
- . 14-A4\2
giving the correlation 0103 | —5 + ko, A1 —-cy).

“ The formulae show that. these two correlations should differ little from those for grandparent and great-
grandparent, using the values already found, and putting ¢; = 1 we have

Stature Span Cubit
Grandparent 0-3095 0-2612 0-2378
Great-grandparent 0-1801 01503 0-1353
Uncle 0-3011 0-25563 ' 0-2311
Cousin 0-1809 0-1445 0-1288

*23. Onthe third supposition, that the marital correlation is due primarily to an association in the essential
genotype z, we obtain results in some respects more intelligible and in accordance with our existing knowledge.
* From the fundamental equations
4 p=cied, p=Heotu),
we mey deduce ¢ 6 =2p—p, A=p/(2p—u),
whence the following table is calculated:

SBtandard

Stature Span Cubit error
y/2 0-2804 0-1989 0-1977 0-0304
P 0-5066 0-4541 0-4180 0-0115
f 0-5433 0-5351 0-4619 0-0160
Cy ¢y 0-7328 0-7093 0-6383 0-038
A 0-3826 0-2804 0-3097 0-028
1+ 4) 0-6913 0-6402 0-6549 . 0014

and making use of the fraternal correlations to separate ¢, and ¢,, by the equations
f=tell+e(l+24)],
ar ¢, = 4f —2p —pt,
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we obtain
¢ 0:8796 10333 0-8139 0-078
¢y 0-8331 0-6864 0-7842 0-077
o 0-2450 0-3883 0-2850 0-105

“The standard error for the dominance rabio is now very high, since the latter is proportional to the
difference f—p. If we assume a known value for ¢;, end calculate the dominance ratio from p and x only,
the standard error falls nearly to its value in Article 18,

' The three values for the ratio of the ancestral correlations 0-691, 0-640, 0-855 are now higher than that
obtained from cbservations of eye colour, and are more similar to the value 0-660 obtained for the coat colour
of horses. Without knowing the marital correlations in these cases, it is not, possible to press the comparison
further. It would seem unlikely that the conscious choice of a mate is less influenced by eye colour than by
growth features, even by stature. But it is not at all unlikely that eye colour is butb slightly correlated with
other features, while the growth features we know to be highly correlated, so that a relatively slight selection in
a number of the latter might produce a closer correlation in each of them than a relatively intense selection of
eye colour.

* The value of ¢; for span is still greater than unity, 1-033, but no longer unreasonably so, since the standard
error ig about 0-078. If we were considering span alone the evidence would be strongly in favour of our third
hypothesis. A remarkable confirmation of this is that Pearson and Lee (loc. ¢it, p. 375), considering organic
end marital correlations alone, show that the observed correlations could be aceounted for by the following
direct selection coefficients:

Stature Span Cubit

0-2374 0-0053 0-1043

Naturally these cannot be taken as final, since there are a large number of other features, which may be
connected with these and at the same time may be subject to sexual selection. The corrslations of cross
aggortative mating are in fact smaller than they would be if direct selection to this extent were actually taking
place. The influence of other features prevents us from determining what proportion of the observed association
is due to direct selection, but if inheritance in these growth features is capable of representation on a Mendelian
scheme—and our resulie have gone far to show that this is likely—it would be possible to distinguish the two
parts by comparing the parental and fraternal correlations with those for grandparents and other kindred.

** On our present supposition that the association is primerily in 2z and for the case of span this seems likely,
the correlations for uncle and cousin will be the same as those for grandparent and great-grandparent, being

given by the formulae (1 +A)“ (1 +A)3
ety l— and ¢ c(—)
leading to the numbers
Stature Span Cubit
Grandparent 0-3502 0-2907 0-2737
Great-grandparent 0-2421 0-1861 0-1793

Fisher now considers the hypothesis that the observed correlation 4 between the phenotypes
x of the parents arises as the summation of two effects. The first is a direct correlation s, which is
the result of direct sexual selection. Fisher calls this the ‘coefficient of selection’. The second
part, 4 — s, is a reflection of a correlation between their z-values, arising differently. Each of these
parts can be treated as regression coefficient. He thus supposes that the effect on a child is the
sum of the effects which arise by these two causes.

Now the direct correlation or regression s between the phenotypes z of the parents produces
a correlation ¢,c,s between their z-values, as shown in Section 22, and hence a regression ¢; ¢,
of the z-value of the father on that of the mother. The further correlation g — s between the parents’
x-values is a reflection of a correlation (u — 8)/c, €, between their z-values, as shown in Section 17,
and hence a regression (- s)/c; ¢,. I we suppose that these can be legitimately added together,
the total regression of one z-value on the other is

A = 6168+ (e —8)]ey ¢y

and this is equal to their correlation.
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Similarly the divect correlation s produces a regression 3¢, ¢,(1+s) of child on parent, and the
correlation (x — s)/c, ¢, between the z-values of the parents produces a further regression (x — s})/2.
Adding these, we find for the total regression of child on parent, which is the same as the correla-
tion between them

P = §e165(1+ )+ Hp—s).

The argument by which Fisher deduces the value

F=1c(1+ey+20,4)

= }e; + e, 05(1 +24)

for the correlation between sibs still holds. From it we find
Cp = C4Co{1 - 24) —4f.

* 24, Neither these nor the similar table for the first hypothesis accord ill with the value obtained for
uncle and nephew, 0-265, from measurements of eye colour. It may, however, be thought that neither of
them give high enough value for cousins. Certainly they do not approach some of the values found by Miss
Elderton in her memoir on the resemblance of first cousins (Bugenics Laboratory Memoirs, 1v). Series are there
found to give correlations over 0-53, and the mean correlation for the measured features is 0-336. From special
considerations this is reduced to 0-270, but if the similarity of first cousins is due to inheritance, it nust certainly
be less than that between uncle and nephew, No theory of inheritance could make the correlation for cousins
larger than or even so large as that for the nearer relationship.

It will be of interest finally to interpret our results on the assumption that the figures quoted (Articie 20)
represent actual coefficients of selection. Manifestly it would be better to obtain the value of 4 experimentally
from the ratio of the ancestral correlations, using the collateral correlations to determine what are the marital
correlations for y. For the present we must negleet the possibility of an independent selection in y: and
although we know that the figures are not final, we shall write s, the coefficient of selection, equal to 0-2374,
0:0053, and 0-1043 in our three cases.

** Further, lot

. p=s
A =ces+ oy’
so that 2p =yl +8)+p—s,
whence we deduce
Stature Span Cubit

€1 Cy 0-7841 7108 0-8725
A 0-2410 0-2761 0-2090
1+ 4) 0-6208 0-6381 (0-6045

the values of 4 being now in much closer agreement for the three features. Further, from the fraternal

lati h
correlation we have ¢ 1-0112 1-0370 0-8940
with a mean at 0-9821.
** Again, for the dominance ratio

0:2763 0-3880 0-2940 0-3194 (mean},

leaving a trifle under 2 per cent for causes not heritable, but requiring high values about 0-32 for the dominance
ratio.

* 25, The Interpretation of the Statistical Effects of Dominance. The results which we have obtained, although
subject to large probable errors and to theoretical reservations which render an exact estimate of these errors
impossible, suggest that the ratio ¢?/0?, the statistical measure of the extent of dominance, has values of about
0-25 to 0-38. In his initial memoir on this subject Karl Pearson has shown that, under the restricted conditions
there considered, this ratio should be exactly }. Subsequently Udny Yule (Conference on Genetics) pointed
out that the parental correlation could be raised from the low values reached in that memoir to values more
in accordance with the available figures by the partial or total abandonment of the assumption of dominance.
To this view Professor Pearson subsequently gave his approval: but it does not seem to have been observed
that if lower values are required—and our analysis tends to show that they are not—the statistical effects are
governed not only by the physical ratio d/a, but by the proportions in which the three Mendslian phases are
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present. This effect is an important one, and very considerably modifies the conclusions which we should draw
from any observed value of the dominance ratio. .

* The fraction §%/«?, of which the numerator and denominator are the contributions of a single factor to &2
and &%, is equal, as we have seen {Article 5, equations V-VII) to

2pqd?
(p+q)ta®—2(p®—g¥) ad + (p+ ¢*) d*’

and depends wholly upon the two ratios d/g and p/g. We may therefore represent the variations of this function
by drawing the curves for which it has a series of constant values upon a plane, each point on which is specified
by a pair of particular values for these two ratios. The accompanying diagram (fig. 1) shows such a series of
curves, using d/a and log (p/g) as co-ordinates, The logarithm is chosen as a variable, because equel intensity of

selection will affect this quantity to an equal extent, whatever may be its value; it also possesses the great
advantage of showing reciprocal values of p/g in symmetrical positions.”
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Fig. 1. Values of logy, {p/g) (upper figures) and of p/g (lower figures).

The dominance ratio given above is obtained by simple substitution of P = p?, @ = pgq, B = ¢2,
p+q=1,into (V) and (VII).
In the paragraph below, the figure 3 is misprinted for 0-3.

“It will be seen that 3 is not by any means the highest value possible: when d = «, and when p/qg is very
great, any value up to unity may appear; but high values are confined to this restricted region. When d/e is
less than 0-3 the ratio is never greator than 0-05, and we cannot get values ag high as 0-15 unless d/a be as great
as 0-5. On the other hand, all values down to zero are consistent with complete dominance, provided that the
values of p/q are sufficiently small.

* We know practically nothing about the frequency distribution of these two ratios. The conditions under
which Mendelian factors arise, disappear, or become modified are unknown. Tt has been suggested that they
invariably arise as recessive mutations in a dominant population. In that case pfg would initially be very high,
and could only be lowered if by further mutation, and later by selection, the recessive phase became more
frequent. These factors would, however, have little individual weight if better balanced factors were present,
until p/g had been lowered to about 10. In face of these theories it cannot be taken for granted that the
distribution of these ratios is & simple one. It is natural, though possibly not permissible, to think of their
distributions as independent. We may profitably consider further the case in which the distribution is sym-
metrical, in which the factor of known o and d is equally likely to be more frequent in the dominent as in the
recessive phase.

“ For this case we combine the numerators and denominators of the two fractions

2pqd? . and 2pgd?
(p+qYat—2(p2—g?)ad+{(p*+q%) dt (p+9)a%+2(p*—q*) ad + (p? +¢%) d*’




60 COMMENTARY ON FISHER

and obtain the joint contribution 2pgd,
(p+9)*a®+(p*+ %) d?

the curves for which are shown in fig. 2, representing the combined effect of two similar factors, having their
phases in inverse proportions. It will be seen that complete dominance does not preclude the possibility of low
value for the dominance ratio: the latter might fall below 0-02 if the greater part of the variance were contri-
buted by factors having the ratio between p and ¢ as high as 100 to 1. This ratio is exceedingly high; for such
& factor only one individual in 10,000 would be & recessive. We may compare the frequency of deaf mutism
with which about one child in 4000 of normal parents is said to be afflicted. It would be surprising if more .
equal proportions were not more common, and if this were so, they would have by far the greater weight.

* The fact that the same intensity of selection affects the logarithm. of p/¢ equally, whatever its value may
be, suggests that this function may be distributed approximately according to the law of errors, This is a
natural extension of the assumption of symmetry, and is subject to the same reservations, For instance, a
factor in which the dominant phage is the commonest would seem less likely to suffer severe selection than one
in which the recessive phase outnumbers the other. But if symmetry be granted, our choice of a variable
justifies the consideration of a normal distribution. :

 Writing £ for log, p/g and o for the standard deviation of £, we have

p=etij2cosh 3, g=et/2coshif and 2pg = }sech? L.
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Fig. 2. Values of logy, (p/g) (upper ligures) and of p/g (lower figures).

“ Hence we have to evaluate

E= w%” f: }sech? §£. e~ E°dE = ;71277 f : isech®3of. e~'df, (XX VIII)
and the dominance ratio derived from the whole group is
B
Gt (1= B)d*’

“ # is a function of ¢ only, which decreases steadily from its value 3 when o = 0, approaching when o is
large to the function 2/(¢ ./27}. The function (164 16072+ 3204}t osculates it at the origin, and appears on
trial to repregent it effoctively to three significant figures. This function has been used for caleulating the form
of the accompanying curves. Fig. 3 shows the course of the function E. Fig. 4 gives the curves comparable to
those of figs. 1 and 2, showing the value of the dominance ratio for different values d/a and ¢. If the assump-
tions upon which this diagram is based are justified, we are now advanced some way towards the interpretation
of an observed dominance ratio. A ratio of 0-25 gives us a lower limit of about 0-8 for d/a, and no upper limit,.
If the possibility of superdominance (d > a} is excluded, then the ratio of the phases must be so distributed
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that the standard ratio ev is not greater than about 3:1. A greater value of the standard ratio would make
the effect of dominarnce too small; & smaller value could be counteracted by a slight reduction of d/a. We have
therefore no reason to infer from our dominance ratios that dominance is incomplete. We may speak of it as
having at least four-fifths of its full value, but we can set no upper limit to it.
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‘ 26. Throughout this work it has been necessary not to introduce any avoidable complications, and for this
reason the possibilities of Epistacy have only been touched upon, and small quantities of the second order have
been steadily ignored. In spite of this, it is believed that the statistical properties of any feature determined
by a large number of Mendelian factors have been successfully elucidated. Due allowance has been made for
the factors differing in the magnitude of their effects, and in their degree of dominance, for the possibility of
Multiple Allelomorphism and of one important type of Coupling. The effect of the dominance in the individual
factors has been seen to express itself in a single Dominance Ratio. Further the effect of marital correlation has
been fully examined, and the relation between this association and the coefficient of marital correlation has
been made clear.
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* By means off the paternal correlation it is possible to ascertain the dominance ratio and so distinguish
dominence frorm all non-genetie causes, such as environment, which rnight tend to lower the correlations: this
ig due to the similarity in siblings of the effects of dominance which causes the fraternal correlation to exceed
the parental. The fact that this excess of the fraternal correlation is very generally observed is itself evidence
in favour of the hypothesis of cumulative factors, On this hypothesis it is possible to calculate the numerical
influenice not only of dominance, but of the total genstic and non-genetic causes of variability. Anexamination
of the best available figures for human measurements shows that there is little or no indication of non-genetic
causes. The closest serutiny is invited on this point, not only on account of the practical importance of the
predominant influence of natural inheritance, but because the significance of the fraternal correlation in this
connection has not previously been realised.

“ Some ambiguity still remains as to the causes of marital correlations; our numerical conclusions are
considerably affected according as this is assumed to be of purely somatic or purely genetic origin. Itis striking
that the indications of the present analysis are in close agreement with the conclusions of Pearson and Lee as
to the genetic origin of a part of the marital correlation, drawn from the effect of the correlation of one organ
with another in causing the selection of one organ to involve the selection of another. This difficulty will, it is
hoped, be resclved when accurate determinations are available of the ratio of the grandparental to the parental
correlation. From. this ratio the degree of genetic association may be immediately obtained, which will make
our analysis of the Variance as precise as the probable errors will allow,

* In general, the hypothesis of cumulative Mendelian factors seems to fit the facts very accurately. The only
marked discrepancy from existing published work lies in the correlation for first cousins. Snow, owing
apparently to an error, would make this as high as the avuncular correlation; in our opinion it should differ
by little from that of the great-grandparent. The values found by Miss Elderton are certainly extremely high,
but until we have a record of complete cousinships measured accurately and without selection, it will not be
possible to obtain satisfactory numerieal evidence on this question. As with cousins, so we may hope that more
oxtensive measurements will gradually lead to values for the other relationship correlations with smaller
standard errors. Eapecially would more accurate determinations of the fraternal correlation make our
conclusions more exact.

“* Finally, it is a pleasure to acknowledge my indebtedness to Major Leonard Darwin, at whoge suggestion
this inquiry was first undertaken, and to whoss kindness and advice it owes its completion.”



