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PREFACE

The application ofgenetical principles to the study of human metrical characters, such as stature,
was first attempted by Galton who, in 1887, used a method of correlation for measuring likeness
between relatives. The theoretical basis of the results remained obscure until Mendelian prin­
ciples of inheritance were applied. Karl Pearson's first attempt, in 1904, to account for the
observed correlation values in this way was not satisfactory, but he succeeded in explaining the
results in 1909 after the idea of random mating had been introduced into human genetics. It
was not until 1918, however, that the matter was properly cleared up by Fisher's classical study,
published in the Proceedings of the Royal Society of Edinburgh. Many aspects of the subject were
dealt with in this paper, such as the effects of dominance and assortative mating on the correla­
tion values. In some sections the exposition is very difficult to follow. The value of Fisher's
contribution to the subject, however, is so great that Professor Moran and Professor Smith have
thought it worth while to discuss his text in detail and criticize it where they think necessary.
For this purpose the reprinting of the original paper is necessary and the running commentary
provided should prove of great value both to students of genetics and of statistics.

L. S. PENROSE
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INTRODUCTION

Sir Ronald Fisher's 1918 paper on the correlations between relatives is one of the classical papers
of scientific literature. A few papers had previously appeared giving the expected values of the
correlations on very simple Mendelian assumptions. Fisher succeeded in dealing with all the
more obvious complications such as complete or partial recessivity, multiple allelism, epistacy,
linkage, and assortative mating, and indeed with combinations of these, in one single paper.
Since these complications are known or virtually certain to occur in real examples, this was a
most important and necessary advance. Furthermore, this paper was published when Fisher
was still only 28 years of age. The treatment suffers from a few minor defects. The model for
assortative mating is rather a special one, though very ingenious; the argument dealing with
linked genes is incomplete; and there is no mention of sex-linkage. But the first two of these
defects are not easy to repair, and there has been no appreciable advance on Fisher's treatment
of these points in the 47 years since his paper appeared.

It is also of interest that we can see in this paper the beginning of some of Fisher's most im­
portant statistical ideas. Thus he sets out the idea of partitioning variance into components.
This presumably led to the Analysis of Variance. Fisher uses in this paper a technique which is
very closely related to the analysis of variance applied to linear regression.

We are very much indebted to the Royal Society of Edinburgh and to Fisher's executor the
Public Trustee of South Australia for permission to reproduce his original paper, and to Pro­
fessor L. S. Penrose for his encouragement. The text of Fisher's paper has here been set in small
type, enclosed in double quotations marks. (Some small changes have been made in the mathe­
matical typography, in order to make it more consistent with the usual present-day practice used
in the commentary. But there has been no alteration in the substance.) The commentary has been
printed in larger type.

We hope that we have everywhere interpreted Fisher's ideas correctly and will succeed in
making the paper more easy to follow.

P.A.P.MORAN
C. A. B. SMITH
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" Several attempts have already beenmade to interpret the well-established results ofbiometry in accordance
with the Mendelian scheme of inheritance. It is here attempted to ascertain the biometrical properties of a
population of a more general type than has hitherto been examined, inheritance in which follows this scheme.
It is hoped that in this way it will be possible to make a more exact analysis of the causes of human variability.
The great body of available statistics show us that the deviations of a human measurement from its mean
follow very closely the Normal Law of Errors, and, therefore, that the variability may be uniformly measured
by the standard deviation corresponding to the square root of the mean square error. When there are two
independent causes of variability capable of producing in an otherwise uniform population distributions with
standard deviations 0"'1 and U 2, it is found that the distribution, when both causes act together, has a standard
deviation ~("1+u~)."

This assumes that the causes act additively and not, for example, multiplicatively.

" It is therefore desirable in analysing the causes of variability to deal with the square of the standard
deviation as the measure of variability. We shall term this quantity the Variance of the normal population to
which it refers, and we may now ascribe to the constituent causes fractions or percentages of the total variance

I MO'



4 COMMENTARY ON FISHER

which they together produce. It is desirable on the one hand that the elementary ideas at the basis of the
calculus of correlations should be clearly understood, and easily expressed in ordinary language, and on the
other that loose phrases about the' percentage of causation', which obscnre the essential distinction between
the individual and the population, should be carefully avoided.

" Speaking always of normal populations, when the coefficient of correlation between father and son, in
stature let us say, is T, it follows that for the group of sons of fathers of any given height the variance is a
fraction, 1- r2 , of the variance ofsons in general. Thus if the correlation is 0'5, we have accoWlted by reference
to the height of the father for one quarter of the variance of the sons."

This does not mean that one quarter of the variance is due to the direct genetic link between
father and son. Some of the correlation may arise indirectly because of a resemblance between
father and mother, and there is a direct genetic link between mother and son.

" For the remaining three quarters we must account by some other cause. Ifthe two parents are independent,
a second quarter may be ascribed to the mother. If father and mother, as usually happens, are positively
correlated, a less amount must be added to obtain the joint contribution of the two parents, since some of the
mother's contribution will in this case have been already included with the father's. In a similar way each of
the ancestors makes an independent contribution, but the total amount of variance to be ascribed to the
measurements ofancestors, including parents, cannot greatly exceed one half of the total. We mav know thi~

by considering the difference between brothers of the same fraternity: of these the whole ancestry is identical,
so that we may expect them to resemble one another rather more than persons whose ancestry, identical in
respect of height, consists of different persons. For stature the coefficient of correlation between brothers is
about 0-54, which we may interpret* by saying that 54 per cent of their variance is accounted for by ancestry
alone, and that 46 per cent must have some other explanation."

Fisher is using' accounted' for in the technical sense that R2 = 0'54 is the multiple correlation
of the measured value on the values of all ancestors. Fisher will show later that most of the
remaining variability is also due to the parents, being caused by their heterozygosity. This
does not contribute to the regression of child on parent, and thus, in the sense of the
theory of regression, this part of the child's variability is not' accounted for' by the parents'
variability.

Suppose that x is a biological measurement on a son obtained by choosing a family at random
out of a large population of families and choosing a son at random out of this family. Let x be
measured from its mean and have variance (T2. If X is the measurement on another son chosen
from the same family the expected value of (X-X)2 will be 2V, where V is the variance ofa son
around the family mean. This mean value of (x - X)2 is the mean over all families.

On the other hand, if x and X are the measurements on two brothers in the same family the
mean value of (x - X)2taken over all families must be 2(T2(I-r), where r is the correlation between
brothers. Thus 2V = 2(T2(I-r), and VI(T2 = I -r.

Suppose now that x and X are measurements on two parents, and z on their offspring. Then the
proportion of the variance of z accounted for by the two parents is the multiple correlation of z

* The correlation is determinfld from the measurements of n individuals, Xv X 2, ... , X n , and of their brothers,
Yl'Y2' ... , Yr; let us suppose that each pair of brothers is a random sample oftwo from an infinite fraternity, that
is to say from all the sons which a pair of parents might conceivably have produced, and that the variance of
each such fraternity is V, while that of the sons in general is (j. Then the mean value of (x - y)2 will be 2V, since
each brother contributes the variance V. But expanding the expression, we find the mean value of both x2 and
y 2 is (j2, while that of xy is rcr2, where r is the fraternal correlation. Hence 2V = 2(j2( 1 - r), or VIcr2 = 1 - r.
Taking the values 0·5066 and 0·2804 for the parental and marital correlations, we find that the heights of the
parents alone account for 40·10 per cent of the variance of the children, whereas the total effect of ancestry,
deduced from the fraternal correlation, is 54·33 per cent. [All footnotes are from the original paper by Fisher.]



P. A. P. MORAN AND C. A. B. SMITH 5

with x and X, i.e. in this case the correlation of z with x +X. The variances of x, X, and z are (T2

each and the variance of x +X is 2(T2(1 +rm ), where rm is the correlation between x and X, i.e. the
'marital' correlation. The covariance of z with (x +X) is the mean value of z(x +X) which equals
2(T2r p where rp is the correlation between a son and a parent. The multiple correlation is therefore
r p (1 +rm )-1 and in the particular case considered this is

0'5066 (1'2804)-1 = 0'3956,

which differs slightly from Fisher's value 0·4010. What Fisher calls the 'total effect of ancestry'
is given by the observed fraternal correlation, which is 0'5433, because this is the square of the
multiple correlation coefficient with all the ancestors and is therefore the fractional reduction in
variance when all the ancestral values are held fixed. The standard errors of these estimates are
not given.

"It is not sufficient to ascribe this last residue to the effects of environment. Numerous investigations by
Galton and Pearson have shown that all measurable environment has much less effect on such measurements
as stature. Further, the facts collected by Galton respecting identical twins show that in this case, where the
essential nature is the same, the variance is far less. The simplest hypothesis, and the one which we shall
examine, is that such features as stature are determined by a large number of Mendelian factors, and that the
large variance among children of the same parents is due to the segregation of those factors in respect to which
the parents are heterozygous. Upon this hypothesis we will attempt to determine how much more of the
variance, in different measurable features, beyond that which is indicated by the fraternal correlation, is due
to innate and heritable factors.

" In 1903 Karl Pearson devoted to a first examination of this hypothesis the twelfth of his Mathematical
Contributions to the Theory of Evolution (' On a Generalised Theory of Alternative Inheritance, with special
reference to Mendel's Laws,' PhiZ. Trans., vol. COllI, A, pp. 53-87. The subject had been previously opened by
U dny Yule, Now Phyt%gist, vol. x). For a population of n equally important Mendelian pairs, the dominant
and recessive phases being present in equal numbers, and the different factors combining their effects by
simple addition, he found that the correlation coefficients worked out uniformly too low. The parental corre­
lations were! and the fraternal 1\.*

~, These low values, as was pointed out by Yule at the Conference on Genetics in 1906 (Horticultural Society's
Report), could be satisfactorily explained as due to the assumption of complete dominance. It is true that
dominance is a very general Mendelian phenomenon, but it is purely somatic, and if better agreements can be
obtained without assuming it in an extreme and rigorous sense, we are justified in testing a wider hypothesis.
Yule, although dealing with by no means the most general case, obtained results which are formally almost
general. He shows the similarity of the effects of dominance and of environment in reducing the correlations
between relatives, but states that they are identical, an assertion to which, as I shall show, there is a remarkable
exception, which enables us, as far as existing statistics allow, to separate them and to estimate how much of
the total variance is due to dominance and how much to arbitrary outsid,e causes.

" In the following investigation we find it unnecessary to assume that the different Mendelian factors are of
equal importance, and we allow the different phases of each to occur in any proportions consistent with the

* The case ofthe fraternal correlations has been unfortunately complicated by the beliefthat the correlation
on a Mendelian hypothesis would depend on the number of the fraternity. In a family, for instance, in which
four Mendelian types are liable to occur in equal numbers, it was assumed that of a family of four, one would
be of each type; in a family of eight, two of each type; and so on. If this were the case, then in such families,
one being of the type A would make it less likely, in small families impossible, for a second to be of this type.
If, as was Mendel's hypothesis, the different qualities were carried by different gametes, each brother would
have an independent and equal chance ofeach of the four possibilities. Thus the formulae giving the fraternal
correlations in terms of the number of the fraternity give values too small. The right value on Mendel's theory
is that for an infinite fraternity. As Pearson suggested in the same paper, ' probably the most correct way of
looking at any fraternal correlation table would be to suppose it a random sample of all pairs of brothers
which would be obtained by giving a large, or even indefinitely large, fertility to each pair, for what we actually
do is to take families of varying size and take as many pairs of brothers as they provide.' In spite of this, the
same confusing supposition appears in a paper by Snow' On the Determination of the Chief Correlations
between Collaterals in the Case of a Simple Mendelian Population Mating at Random' (E. C. Snow, B.A.,
Proc. Roy. Soc. June 1910); and in one by John Brownlee, 'The Significance of the Correlation Coefficient
when applied to Mendelian Distributions' (Proc. Roy. Soc. Edinb. Jan. 1910).

'-2
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conditions of mating. The heterozygote is from the first assumed to have any value between those of the
dominant and the recessive, or even outside this range, which terms therefore lose their polarity, and become
merely the means of distinguishing one pure phase from the other. In order to proceed from the simple to the
complex we assume at first random mating, the independence of the different factors, and 'that the factors are
sufficiently numerous to allow us to neglect certain small quantities."

Although Fisher states that random mating is assumed at first, the theory is developed in terms
more general than this and he is careful to state when the additional assumption is introduced.
He also assumes for the present that each measured character is the result of summing a large
number of small factors which are independent, Le. that there is no linkage. It then follows from
the standard properties ofmeans, variances and covariances that· the mean value of the character
in the population is equal to the sum of the means of the individual small factors, the variance is
similarly the sum of the individual variances, and the same is true of the covariances.

Suppose that for the particular factor considered the two possible alleles are A, and A2• We
then have the following table:

Zygote
Phenotypic effect
Freqnency

A,A,
-a
R

PR = Q2,

If the individuals concerned had been produced by a process involving random mating and no
selection we would have

and p=P+Q, q=Q+R,

would be the gene frequencies of the A, and A 2 genes so that

P = p2, Q = pq, R = q2.

As assortative mating is considered later, it is more convenient to develop the theory in terms
of P, Q and R without assuming the Hardy-Weinberg formula except when random mating is
explicitly asserted.

The variance ",2 given by (I) is the contribution of this factor to the total variance er2 whether
or not the distribution is normal. The fact that the distribution of the sum of all factors will be
approximately normally distributed (particularly if measured after a suitable transformation)
will follow from the version ofthe Central Limit Theorem which proves asymptotic normality for
a sum of independent random variables each of which is 'individually negligible' in a certain
precise sense. The calculation of the third and fourth moment here is merely illustrative.

H 1. Let us suppose that the difference caused by a single Mendelian factor is represented in its three phases
by the difference of the quantities a, d, - a, and that these phases exist in any population with relative
frequency P, 2Q, R, where P+2Q+R = I.

H Then a population in which this factor is the only cause of variability has its mean at

so that

Let now

m = Pa+2Qd-Ra,

P(a-m) +2Q(d-m) -R(a+m) =o.

P(a-m)2+2Q(d-m)2+R(a+m)' =",' (I)

a2 then is the variance due to this factor, for it is easily seen that when two such factors are combined at random,
the mean square deviation from the new mean is equal to the SUlTI of the values of a 2 for the two factors
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(II)

separately. In general the mean square deviation due to a number of such factors associated at random will be
written

H To justify our statement that a 2 is the contribution which a single factor makes to the total variance,it
is only necessary to show that when the number of such factors is large the distributions will take the normal
form.

"Ifnow we write ft3 = P(a_m)3+ 2Q(d-m)3-R(a+m)3,

ft, =P(a-m)'+2Q(d-m)'+R(a+m)',

and if M s and M4 are the third and fourth moments of the population, the variance of which is due solely
to the random combination of such factors, it is easy to see that

M s :::::: "£4"'3'

M, - 3,,' = ~(ft, - 3a').

Now the departure from normality of the populationmay be measured by means of the two ratios

fJ M; . fJ M,
1=(T'6 and 2=(;4'

The first of these is (~ft3)2/(~2)3,

and is of the order lin, where n is the number of factors concerned, while the second differs from its Gaqssian
value 3 also by a quantity of the order lin."

In sections 2 and 3 the folJowing problem is considered. Suppose that the measurement x
(measured from the population mean) is the sum of the effects of a large number ofindependently
segregating factors. For a parent (say a father) and an offspring (say a son) these measurements
will be distributed, to a high degree of approximation, in a bivariate normal distribution, and we
wish to calculate the regression coefficient of the value for the son on the value for the father. This
is done by an ingenious approximate argument. In this it is assumed that the parents mate at
random but not necessarily the grandparents.

x (whose variance is (T2) is the sum of a large number of independent factor pairs of which a
typical one is (Av A 2 ) whose contribution to the variance is. a 2• Suppose the proportions of
(A,A,) (A l A2)and (A2A2) in the whole populationareF, ij, R. We now choose a particular value
x for the father. In the subpopulation of fathers having this value, the frequencies of (A l A , )
(A, A 2 ) and (A. A.) will be different and we write P, Qand R for them. Our first task is to calculate
these.

To do this, consider a population offathers in which all the factors have frequencies the same as
in the above population except for the one factor considered for which all individuals are to be
heterozygotes (Al A.). The variance of this population is then (T2 - a' since the component
variance, a 2, due to Av A., has been removed in this way. Ifwe now modify this in the manner
described and use the fact that the distribution of x is normal we see that the frequencies of
(A , A ,), (A l A.) and (A 2 A.) must be

- (X-a+1n)2}
Pexp - 2(cr2 -a') , etc.,

in order to get the previously considered population. From this we obtain (III) which is an
approximation obtained by supposing that

a2/(T2 and x2/(T'

are small. These give the proportions of the three types in a population of fathers with value x.
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We suppose that these fathers mate at random with the general population. For the particular
factor considered we then get Table A, in which each cell gives the values ofthe possible offspring
with their frequencies.

TABLE A

Father array
,- "-

Mother, A,A, A,A,
from rest (J, d

of population P 2Q
"'---., ,-o------.-.A-_.---.. r-----A----.,

A,A, (J, I' (J, " d
PI' PrJ PQ

A,A, d 2Q (J, d (J, d -(J,

PQ PQ rJQ 2QQ QQ
A,A, -(J, R d d -(J,

PR QR rJR

--,
A,A,
-(J,

R

d
PR

d -((,
QR QR

- Ct

RR

The sons therefore have values a, d and - a with probabilities

PP + PQ + PQ+ QQ,

PQ + PQ -/- pjj, + PR + RQ+RQ+2QQ,

QQ+ QR+ QR+ RR.

We now insert the values given by (III) and ignore terms of higher order than the first in X/(7'2 and
we obtain the formulae given at the beginning of paragraph 3. Multiplying these by a, d and - a
and adding, we find that the expected value of the mean of the offspring is

-- - x -- -- -- -- -
2d(PR- Q2) + (7'2 [PQ(a- d)2+ 2PR(a2_d2)+QR(a +d)2 +2(PR- Q2) d(d - m)]. (IlIa)

(A factor 2 multiplying (PR- (2) inside the square bracket is omitted in Fisher.) Note that in
order to obtain (lIla) it is necessary to use the result

m(P+2Q+R) = aP+2dQ-aR.

If the parents are the result of a mating at random

PR_Q2 = 0,
and (lIla) simplifies to (IV).

Thus (IV) has been obtained by an approximate argument. However (IV) is exact in the sense
that it gives the ratio of the part of the covariance, which is due to the factor considered, to (7'2.

This means that if x is the value of the father and X of the son, where

X=X,+X2+"., X=X,+X2+,,·,

and Xi' Xi are the values of the contribution made by factor i, then

covariance (x;,XJ = [PQ(a-d)2+ 2PR(a2-d2)+QR(a +d)2].

(lIla) is exact whether PR- Q2 = 0, or not.
We shall now prove this, and in doing so we shall revert to the notation P, Q, R instead of

P, Q, R as Fisher does this in paragraph 4 onwards. In this way we will see that (lIla) is also
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exact. In the association table (Table B), the columns correspond to the genotypes of the male
parent and the rows to the genotype of the female parent. In each cell the genotypes of the
offspring with their probabilities are given, assuming random mating in the parents. From this
we can immediately extract an association tablc for parcnt/offspring (Table C).

TABLE B

Female
parent

,-------"-----,
A,A, a P

A,A, -a R

Male parent
,----------~-------------,
A,A, A,A, A,A,

u d -a
P ~ R

,..------'-....., ~-A-._____, ~--"----;

a a d d

p2 PQ PQ PR
a d a d -a d -a
PQ PQ Q2 2Q2 Q2 QR QR

d d -a -a
PR QR QR R'

TABLE C

Offspring

A,A,
A,A,
A,A,

,
A,A,

P'+PQ
PQ+PR

o

Parent
---'----

A,A,
PQ+Q'

PQ+2Q'+QR
Q'+QR

A,A,
o

PR+QR
QR+R'

Notice that unlike Tables A and B, Table C is not symmetric about the leading diagonal but
does still have another type of symmetry about the other diagonal resulting from the symmetric
role of the two factors, Al and A. (the two previous tables of course also have this type of
symmetry).

From Table C in turn we can find the mean value of the offspring multiplied by the probability
of the parent, for each of the parental types, and this is shown in Table D. The sum of the third
column gives the mean value of the offspring which is

2d(PR-Q').

'fABLE D

Parental type
and its value

,-----'~-­

A,A, a
A,A, d
A,A, -a

Probability of parental
type multiplied by mean

value of offspring

aP'+aPQ+dPQ+dPR
aPQ -aQR+d(PQ +2Q'+QR)
dPR+dQR-aQR-aR'

The covariance uncorrected for the means is the sum of the products of the first and second
columns. Calculating this and subtracting the correction for the means which is

m{m+2d(PR-Q')},

we verify the formula before (IV) which is therefore exact when corrected as in (IlIa).

",TSSEY U:~IVERS!TY OF
\-.,:l,\NAVl,\ TU LIBRARY,
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When the parents have been produced by random mating we have PR-Q2 = 0 which is the
Hardy-Weinberg relation and we can then write

P = p2, Q = pg, R = g2,
where p = P+Q, g = Q+R.

"2. If there are a great number of different factors, so that (J' is large compared to every separate lX, we may
investigate the proportions in which the different phases occur in a selected array of individuals. Since the
deviation of an individual is simply due to a random combination of the deviations of separate factors, we
must expect a given array of deviation; let us say x, to contain the phases of each factor in rather different
proportions to those in which they exist in the whole population. The latter will be represented now by P, 2Q, R,
while P, 2Q, R stand for the proportions in some particular array under consideration.

" Consider a population which is the same in every respect as the one we are dealing with save that all its
members have one particular factor in the heterozygous phase, and let us modify it by choosing of each array
a proportion P which are to become dominants and to increase by a - d, and a proportion R which become
recessive and diminish by a +d: the mean is thereby nloved to the extent m - d.

\I Of those which after this modification find themselves in the array with deviation x, the dominants
formerly had a deviation x-a+m, the heterozygotes x-d+m, and the recessives x+a+m, and since the
variance of the original population was 0-2 - a,2, the frequencies of these three types are in the ratio

_ {(x-a+m)'} - {Pexp - , ') :2Qexp2(<T -ex
(X-d+m)'} :Rex {_ ~x+a+m)'}
2(<T' - ex') p 2( <T' - ex') ,

(III)

or, when (j is great compared to iX, so that iX2 jcr2 may be neglected,

P=P[1+;,(a-ml]

Q=Q[l+;,(d-m)]

R=R[l-;,(a+m)]

giving the proportions in which the phases occur in the array of deviation x.
"3. Hence the members of this array mating at random will have offspring distributed in the three phases

in the proportion

p, [1+ ;,(a-m)}PQ [2+ ;,(a-m+d-m)] +Q' [1+ ;,(d-m)}

PQ[2+ ;,(a-m+d-m)]+2Q'[1+ ;,(d-mJ]+PR[2- ;,(2m)]+QR[2+ ;,(d-m-a-m)}

Q' [1+ ;,(d-m)] +QR [2+ ;,(d-m-a-m)] +R' [1- ;,(a+m)}

and therefore the deviation of the mean of the offspring is

2d(PR-Q') +-"- [PQ(a-d)'+ 2PR(a'-d') +QR(a+d)'+ (PR-Q')d(d-m)].
<T'

" Omitting the terms in (FE - (2), which for random mating is zero, the regression due to a single factor is

x __ __ _~

- [PQ(ex-d)'+ 2PR(a'-d') +QR(a+d)'].
<T'

(IV)

"4. To interpret this expression; consider what is involved in taking a, d, - a as representing the three
phases of a factor. Genetically the heterozygote is intermediate between the dominant and the recessive,
somatically it differs from their mean by d. The steps from recessive to heterozygote and from heterozygote
to dominant are genetically identical, and may change from one to the other in passing from father to son.
Somatically the steps are of different importance, and the SOma to some extent disguises the true genetic
nature. There is in dominance a certain latency. We may say that the somatic effects of identical genetic
changes are not additive, and for this reason the genetic similarity of relations is partly obscured in the
statistical aggregate. A similar deviation from the addition of superimposed effects may occur between
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different Mendelian factors. We may use the term Epistacy to describe such deviation, which although
potentially more complicated, has similar statistical effects to dominance. If the two sexes are considered as
Mendelian alternatives, the fact that other Mendelian factors affect them to different extents may be regarded
as an example of epistacy."

The value, d, for the heterozygote A, A, will not be exactly intermediate between the value a
for A, A, and the value - a for A, A, unless d = O. Fisher proposes to replace these by values for
which the heterozygote is c+b, c, c- b. These values are fitted by least squares, i.e. by minimizing
the sum (Fisher uses 8 without a suffix for summation),

8, = P(c+b-a)'+2Q(c-d)'+R(c-b+a)'.

This procedure is equivalent to considering the linear regression of the measured value on the
number of A, genes present, and the reason for its usefulness will appear later. To minimize 8, we
have to solve the equations

The solution is

! 88, = P(o+b-a)-R(o-b+a) = 0,
2 8b

188
2 80' = P(0+b-a)+2Q(0-d)+R(0-b+a) = O.

0= (P+:)Qd, b = a- Q(P;R)d,

(IVa)o+b-a = 2RQdfT, o-d = -2PRdfT, o-b+a = 2PQdfT.

where T = PQ+2PR+QR.
Fisher's formula for b should have the first plus sign changed to minus. Notice that band 0

depend not only on a and d, but also on the frequencies P, 2Q, R.
Notice also that if PR = Q', T = Q.
Using these values we find the deviations from the regression line for A, A" A, A" and A, A,

to be

These deviations have the expected value

P(0+b-a)+2Q(0-d)+R(c-b+a) = 2dT-' (PRQ-2QPR+RPQ) = O.

'l'heir variance is therefore

82= P(o +b _a)2 + 2Q(0- d)2 + R(o- b+ a)2

= 4PQRd'fT. (IVb)

This is also by definition the minimum value of 8" as follows from the ordinary least squares
regression theory.

The covariance between the' representative values' and the' deviations from linearity' is then
the mean product (since the mean deviation is zero). This is

P(o+ b-a) (0+ b) + 2Q(c - d) 0+R(o - b+ a) (0 - b)

= 2dT-'{[PQR(0+b)-2QPRc+RPQ(0-b)]

= O.

Thus the correlation is zero as again follows from the usual regression theory.
The total 'genotypic' variance is

ex2 = P(a-m)'+ 2Q(d-m)2+R( -a-m)2,
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(J2 = P(c+b-m)2+2Q(c-m)2+R(c-b-m)2,

and

p' =P(c+b-m)'+2Q(c-m)'+R(c-b-m)',

and can be decomposed into two parts. The first of these is the variance of the representative
values

which is nowadays called the 'genetic' variance due to the At> A 2 genes. The second is the variance
of the 'dominance deviations', 82, as given by (IVb) above. We can verify algebraically that

ex2 = f32 +82
,

which is again a consequence of the usual regression theory, especially when the latter is pre­
sented in an analysis of variance table.

If random mating holds, T = Q, and PR = Q2 so that

ex2 = 2a2Q - 4Q(P - R) ad +2Q(P +R) d2

(J2 = 2a2Q - 4Q(P - R) ad +2Q(P - R)2d2.

(Fisher has 2a2Q2 in this formula (formula (VI)) which is wrong.) Then

ex2 - (32 = 4Q2d2 = 82.

The total variance, (T2, of the character in the population is the sum, :Sex2, over all pairs ofgenes
like At> A 2, since we suppose the character is additive. Fisher writes

T 2 = "2:.(32, e2 = "2:.82,

"'rhe contributions of imperfectly additive genetic factors divide themselves for statistical purposes into
two parts: an additive part which reflects the genetic nature without distortion, and gives rise to the corre~

lations which one obtains; and a residue which acts in much the same way as an arbitrary error introduced
into the measurements. Thus, if for a, d, - a we substitute the linear series

c+b,c,c-b,
and choose b and c in such a way that

P(c+ b - a)' + 2Q(c - d)' +R(c- b+a)'

is a Ininimurn, we find for this minimum value 82,

8' = 4PQRd'.
PQ+2PR+QR'

which is the contribution to the variance oftha irregular behaviour of the soma; and for the contribution of the
additive part, /32, where

we obtain

and since

we have

fJ' = 2b'(PQ +2PR +QR),

b - a . Q(P-R)d
- +PQ+2PR+QR'

P' = 2a'(PQ+2PR+QR)-4Q(P-R)ad+ 2Q'(P-R)'d'
PQ+2PR+QR

for then

"5. These expressions may be luuch simplified by using the equation

Q' = PR,

8' =4Q'd'

P' = 2a2Q'-4Q(P-R)ad+2Q(P-R)'d',

which appears in the regression in Article 3 (IV), and

00' = 2a'Q(P-R)ad+2Q(P+R)d'.

(V)

(VI)

(VII)
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a2 =fJ'+8',

r2 =SfJ',
(,'2 = :Eoll,
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(VIII)

(IX)

(X)

var(x1 +x.) fJ' fJ
{var (xl +x.+xa)var(x1 + x.)}! = (a'fJ')! =;X.

E(Xal first gene is A 1) = pta - c- b) +q(d - c)

= p(2RQdP-1) +q( - 2PRdP-1) = o.
Similarly,

Then

The reasons for introducing this type of regression analysis are most easily seen from later
formulations of the problem by MaIecot (Les mathematiques de I'heredite, Paris (1948»), Li and
Sacks (Biometrics, 10, (1954), 347-360). At any given locus any individual has two genes which
can be distinguished by their origin one from the individual's father, and one from his mother.
The effect produced by this pair of genes can be split up into three components in the following
way:

First gene Second gene Frequency x= x, + x, + x2

A, A, P a = t(c+b)+t(c+b)+(a-c-b)
A, A2 Q d = t(c+b)+t(c-b)+(d-c)
A2 A, Q d = t(c-b)+t(c+b)+(d-c)
A2 A2 R -a = t(c-b) + t(c-b)+ (-a-c+b)

The first component is Hc+b) or Hc-b) according as the first gene is A1 or A., and similarly
for the second gene. The third component is a deviation from linearity. Fisher's' representative
value' is Xl + x•. With random mating we find from what has gone previously, that

tfJ' = var (Xl) = var (X.), 8' = var (xa),

and the three covariances between the x's are zero. The correlation between (Xl + X. + xa) and
(Xl + X.) is then

Now consider a parent and offspring with values (Xl +x.+xa) and (Xl +X.+Xa) respectively.
We make the convention that the 'first' gene (which results in the contributions Xl and Xl) is the
gene which this parent hands on to the offspring, so that Xl = Xl. The second genes in the two
individuals are A1and A., with probabilities p and q, independently of each other. Thus Xl = Xl'

X.' and X. are distributed independently of each other, and so are the pairs (x., Xa) and (xa, X.).
Xl = Xl is uncorrelated with Xa and Xafrom what has been proved above.

It can also be shown that xaand Xaare uncorrelated. This can be done as follows. Suppose that
the gene passed from parent to offspring is A1• Then using the above table and the fact that
P =p', Q =pq,

E(Xal first gene is A1) = o.
E(xaX.I first gene is A1)

= E(xal first gene is A 1) E(Xal first gene is A1)

= o.
The same holds if the first gene is A. and thus

so that

E(xa) = E(Xa) = E(xaXa),

cov (xa, Xa) = o.



14 COMMENTARY ON FISHER

The five variates Xl = Xl> X~, X8, X., X. are thus uncorrelated in pairs, so that the correlation
between X and X arises only through the pair Xl' Xl" Then

cov (Xl' Xl) = !ufJ',

where u is the probability of sharing a gene.
With pairs of sibs, or double first cousins, the situation is more complicated, since the

individual can then share two genes at once. In such a case each Xr may be correlated with
X r (r = 1, 2, 3), but if r 4' 8, the pairs (x" xs ), (X" X s), (x" X s) are uncorrelated. Thus Fisher
remarks that with sibs and other such cases, it is necessary to take into account the correlation
between the' dominance deviations' x3 and X 3•

Avaluable general theory ofthis approach is given byTrustrum (Proc. Gamb. Phil. Soc. 57 (1961),
315-320).

cov(X,X) = COV (Xl' Xl) = var(xl ) = til".
Fisher does not consider the components Xl and Xl separately but the 'representative values'

(Xl +X.) and (Xl +X~). Thus from his point of view the correlation between parent and offspring
arises solely from that of the representative values.

Most pairs of relatives in a population can share a gene which may be passed directly from one
relative to another as with father and son, or which may come from a common ancestor as with
brothers. They are then said to have genes which are 'identical by descent', as distinct from pairs
of genes which may be identical by chance. We can say that father and son have 'one gene in
common'. Similarly, uncle and nephew have probability i of having a gene in common, first
cousins have probability! of having a gene in common, and so on. Then arguing as above the
correlation between Xl>X~,X8,XI,X~,X3 (where x I+X.+X3 and X I +X.+X8 refer to the two
individuals) are all zero except that

" The regression due to a single factor of the mean of the offspring of parents of a given array is

.,2 p2
0-2 ' 2'

and adding up the effects of all factors we find

(XI)

so that the parental correlation for a static population mating at random is simply

1 T 2

"2' 0-2 '

We may regard this formula otherwise. The correlation between the actual somatic measurements such as
a, d, - a, and the representative linear quantities c + b, 0, C - b is T/o-. Thus the correlation of parent and child
is made up of three factors, two of them representing the relations between the real and the representative
measurements, and the third the correlation between the representative measurements of the two relatives.
Thus the effect of dominance is simply to reduce certain relationship correlations in the ratio 7 2/0-2 .

"The values of the correlations between the representative measurements for random mating, which may
be called the genetic correlations, are given in the accompanying table:

Half 2nd Half 1st Half Ancestral
Generations cousin cousin brother line Brother 1st cousin 2nd cousin

Own 1/64 1/16 1/4 1 1/2 1/8 1/32
Father's 1/128 1/32 1/8 1/2 1/4 1/16 1/64
Grandfather's 1/256 1/64 1/16 1/4 1/8 1/32 1/128
Great-grandfather's 1/512 1/128 1/32 1/8 1/16 1/64 1/256
Great-great-grandfather's 1/1024 1/256 1/64 1/16 1/32 1/128 1/512
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"6. The above reasoning as to the effects of dominance applies without modification to the ancestral line,
but in a special class ofcollaterals requires reconsideration. The reason is that the deviations from linearity are
now themselves correlated. In other words, a father who is heterozygote instead of recessive may have
offspring who show a similar variation; but they may also be changed from heterozygote to dominant. In the
case of siblings, however, whichever change takes place in one is more likely to occur in the other.
"Thus~writing i, j, k for the deviations

a-m, d-m, -(a+1r/,),

so that iP+ 2jQ +kR = 0 (XII)

and p 2, pq, q2 for P, Q, R, we can draw up association tables for different pairs of relatives, and readily obtain
the correlations between them by substituting the fractions in the nine sections of the table as coefficients of
a quadratic function in i,i, k.

" Thus the association table between parent and child is

p3 p'q
p'q pq(p+q) pq'

pq' q'

from which we obtain the quadratic

pSi' + 2p'qij+pq(p +q)j' + 2pq'jk +q'k',

which is equal to
I .

- (p', - q'k)3 = t(1',
4pq

The association table for parent and child given by Fisher above has its columns corresponding
to the three genotypes AlAI' A I A 2, A2A2 respectively, and hence to the deviations i,j,k. The
rows have a similar meaning for the offspring. The entries in the table are the respective
probabilities of occurrence of all combinations of father and offspring; e.g. the combination
father Al AI' offspring Al AI> has probability p3. The entries can be found by putting P = p',
Q = pq, R = q2 in Table C, using p+q = 1. The 'quadratic' under the table is the covariance
(a word which he had presumably not yet invented). This can be found directly from its definition
as a mean product of deviations, i.e. as

:E (prob) (parent's deviation) (offspring's deviation)

= p3.i.i. +p2q.j.i+ ...

= p3i2+ 2p 2qij +pq(p +q)j2 +2pq2jk +q3k2

(there being a misprint in Fisher's text). On substituting for j, using (XII), this becomes

_1_ (ip 2_ kq2)2 = !(12,
4pq

the bracketed expression being squared and not cubed as in Fisher's text.
To obtain the variance of father and offspring we use the formula for (12 given before. Then

(12 = 2a2Q-4Q(P-R)ad+2Q(P-R)2d2

= 2a2pq-4pq(p-q)ad+2pq(p_q)2d2

= 2pq{a-(p-q)d}'.

Now p'i +2pqj +q2k = 0,

and since

we find

a-(p-q)d = !(i-k)-(p-q){j-Hi+k)},

2{a - (p -q) d} = i -k+P -q (p2i +q2k) +(p - q) (i +k)
pq

= ~ (ip2_ kq2).
pq
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Thus the variance is
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(1' = 2~q{ip' - kq'}',

which is twice the covariance obtained above.

" while for brother and brother we have the table

p'(p+ tq)'
p'q(p+M

ip'q'

p'q(p+tq)
pq(p'+ 3pq+q')

pq'(ip+q)

ip'q' .
pq'(lp+q)
q'(ip+q)'

which gives us a quadratic expression exceeding that for the parental correlation by the terms

p:q'(i'- 2ij +4j' + 2ik- 2jk+ k'),

which are equal to 182, and therefore give for the fraternal correlation

1
20"' (T' + i6')."

To obtain the brother-brother table we consider the table given before (Table B) of all possible
offspring of two randomly mated parents, and examine all possible fraternities. Then an
(A l Ai> Al Al ) fraternity can arise out of a crossing Al Al x A l A l with probability p2, or out of a
crossing A1A.xA1A l with probability i(2PQ+2PQ)=PQ, or finally out of a crossing
A l A. x A l A. with probability la(4Q') = !Q'. This gives us the cell in the first row and first
column of Table E and the others are obtained similarly.

TABLE E

Brother
~

, ----.
Brother i j k

i P'+PQ+tQ' PQ+iQ' iQ'
j PQ+iQ' PQ+2PR+Q'+QR iQ'+QR
k iQ' tQ'+QR iQ'+QR+R'

Notice this is symmetric about the leading diagonal and symmetric about the other diagonal
on interchanging P and R. On substituting for P, Q and R we get Fisher's table, To save algebraic
labour we subtract the previous table and get an array of the form:

!p'q2 _ tp'q' !p2q'

_ ip'q2 p'q' - ip'q2

ip'q' - tp'q' !P'q'

from which we immediately get the expression

;}p'q'(i - 2j +k)2,

(2ij and 2jk in Fisher's result should be 4ij and 4jk) and on substituting for i, j, k in terms of

a, d and m this becomes p'q'd' = 18'.

The brother-brother correlation is therefore exactly intermediate between parent-offspring
correlations with and without the same degree of dominance.
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We have set out the above argument in detail in order to show Fisher's procedure. However,
the simplest way of finding the above brother-brother table is to use the fact that sibs have
probability! of sharing two genes in the previously used sense (and therefore of having the same
genotype at this locus), probability t of sharing one gene, and probability! of sharing no gene.
The above table is then found by adding the three corresponding 3 x 3 association tables. The
same method of approach can be used in all the following tables but we follow Fisher's method in
order to make his discussion clear.

"The effect of dominance is to reduce the fraternal correlation to only half the extent to which the parental
correlation is reduced. This allows us to distinguish, as far as the accuracy ofthe existing figures allows, between
the random external effects of environment and those of dominance. This halving of the effect of dominance,
it is important to notice, is independent oftha relative importance ofdifferent factors, of their different degrees
of dominance, and of the different proportions in which their phases occur. The correlation between the
dominance deviations of siblings is in all cases, 1.

" 7. To investigate the cases of uncles and cousins we must deal with all the possible types of mating down
to the second generation. The three Mendelian phases will yield six types of mating, and ordinary cousinships
are therefore connected by one of six types of sibship. The especially interesting case of double cousins, in
which two members of one sibship mate with two members of another, can occur in twenty.one distinct ways,
gmCe any pair of the six types of sibship may be taken. The proportionate numbers of the three Mendelian
phases in the children produced by the random matings of such pairs of sibships is given in the accompanying
table:

Type of sibship
Frequency

p'

4p'q
2p'q'
4p'q'
4pq'
q'

1.0.0
p'

1.0.0

3.1.0
1.1.0
1.1.0
1. 3.0
0.1.0

p.q.O

1. 1.0
4p'q

3. 1.0

9. 6.1
3. 4.1
3. 4.1
3.10.1
O. 3.1

3p p+3q q
4" 4 4

0.1.0
2p'q'

1.1.0

3.4.1
1.2.1
1.2.1
1.4.3
0.1.1

P I q
2'2'2

1.2.1
4p'q'

1.1.0

3.4.1
1. 2.1
1. 2. J
1. 4.3
0.1.1

P I q
2'2'2

O. 1.1
4pq'

1. 3.0

3.10.3
1. 4.3
1. 4.3
1. 6.9
O. 1.3

P 3p+q 3q
4 4 4

0.0.1
q'

0.1.0

0.3.1
0.1.1
0.1.1
0.1.3
0.0.1

O.p.q

H The lowest line gives the proportions of the phases in the whole cOllsinship whose connecting sibship is of
each of the six types.

To discuss uncle-nephew relationships and cousins we have to consider three generations
because we must first calculate the different probabilities of various classes of sibship which can
arise from a random mating of unrelated pairs. This is done in Table F.

TABLE F

Relative frequency of sibs
,-- "--------,
A,A, A,A, A,A,

Type of
mating

A,A, xA,A,
A,A,xA,A,
A,A, xA,A,
A,A,xA,A,
A,A, xA,A,
A,A,xA,A,

Probability
of mating

p'
4p'q
2p'q'
4p'q'
4pq'
q'

I
I
o
1
o
o

o
1
1
2
1
o

o
o
o
1
1
1

We may illustrate the meaning of this table by saying that the mating A,AsxA,As has
probability 4p SqS of occurring and that each of its offspring has (independently) tbe probabilities
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1, t and 1of being Al AI> Al A. or A. A •. Such a sibship is denoted by Fisher by the symbol
(1.2.1).

Fisher's 6 x 6 table is a table giving relative frequencies of the three genetic types in the
offspring from a mating in which it is known that one parent comes from one ofthe above specified
sibships and one from another. (Note that the entry 3.10.1 in the fifth row and second column of
the 6 x 6 table should be 3.10.3). Thus the offspring of a mating between an individual out of a
sibship whose parental cross was Al Al x Al A., and an individual from a sibship produced by a
mating AIA.xA.A., will be of types AlA!> AlA. and A.A. with probabilities 1

3
., H, 1

3
•

respectively.
To construct this table it is convenient to regard such symbols as (1, 0, 0), (1,1,0), etc., as row

vectors. To obtain any entry in the table we premultiply the vector corresponding to the column
by the transpose of the vector corresponding to the row. Thus in the above case we take

(i)(0 1 1)=G i i).
Each element of the resulting 3 x 3 matrix is then multiplied by the corresponding vector in the
following matrix, and the products summed. This matrix is

(

4.0.0 2.2.0 0.4.0)
2.2.0 1.2.1 0.2.2.
0.4.0 0.2.2 0.0.4

These give relative frequencies of offspring as derived from Table F. Thus the matrix

(~ ~ ~)
o 0 0

gives (2.2.0) +(0.4.0)+(1.2.1)+(0.2.2) = (3.10.3)

which is the required result.
The table is symmetric about the leading diagonal and has a number of other symmetries.
Ifan individual from a sibship Si is mated with an individual chosen at random from the whole

population, the three types of individual will occur in the offspring with the probabilities given in
the last row. Thus if a member of a sibship of type (1.1. 0) is mated in this way, the offspring will
be Al AI> Al A. and A. A. with probabilities

!p, t(p +3q), 1q.

This can be seen directly or by summing the probabilities corresponding to the elements of the
columns of the 6 x 6 table after multiplying each by the probabilities of the rows, and then
rescaling to obtain total probability equal to unity. Thus if two individuals are cousins, and
connected by a given one of the above sibships, and are not related in any other way, each will
belong to Al AI' Al A. or A. A. with probabilities given by the last line.

"If we pick out all possible pairs ofuucle (or aunt) and nephew (or niece) we obtain the table

p3(p+ ~q)

tp'q(3p+q)
tp'q'

tp'q(3p+q)
tpq(p' +6pq +q')

tpq'(p + 3q)

tp'q'
tpq'(p+ 3q)
q'(tp+q)

the quadratic from which reduces exactly to iP2, showing that when mating is at random the avuncular
correlation is exactly one half of the paternal. "
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The uncle-nephew table can be constructed from first principles by combining the previous
brother-brother table with the parent-offspring table, or it can be constructed from the above
6 x 6 table. Consider the latter method. Suppose that the uncle is the brother of the nephew's
father. There are six sibships in which the father and uncle can occur and these are represented
by Fisher by the six row vectors (1. O. 0), (1.1. 0), (0.1. 0), (1. 2.1), (0.1.1), (0.0.1) at the top of
the six columns of the 6 x 6 table. The components of these row vectors represent relative
frequencies and not probabilities. We therefore convert them into probabilities so that we obtain

(1.0.0), (!.t.O), (0.1.0), (i.!.!), (O.t.t), (0.0.1).

These six sibships arise with probabilities

p4, 4p3q, 2p 2q2, 4p 2q2, 4pq2, q4

respectively and the corresponding probabilities of the Al AI' Al A2and A2A 2in the nephew are
given by the last row of the table. If the vectors of the last row of the table are turned into
column vectors (p. q. 0)', ... , etc., the 3 x 3 association table will have 9 elements which are the
elements of the 3 x 3 matrix

p4(P.q .0)' (1.0.0) +4p3q(!p. Hp+ 3q). iq)' (t.!. 0) +2p2q2(!p. t. iq)' (0.1.0)

+ 4p 2q2(lp. t.!q)' (!. t· i) +4pq3(!p. !(3p+q). !q)' (0. l.!) +q4(0.p .q)' (0.0.1)

= p4 (: ~ ~) +2p3q(H/f3q) !(pif3q) ~)
o 0 0 !q iq 0

+ 2p 2q2(~ tp

~) +p2q2(tP f tP
)

OlqO lqq!q

+2Pq3(~ !(3~+q) H3tP+q))+q4(~ ~ ~)
o iq iq 0 0 q

and adding these we obtain the uncle-nephew table given by Fisher. Notice that this table is
symmetric although the relationship is not. The rows correspond to the nephew and the columns
to the uncle. Inserting the values i,j, k and multiplying each element of the matrix by the corre­
sponding product of i's, fs and k's we get a formula for the covariance which begins

p2(p+ lq) i 2 +2{lp2q(3p +q) ij}+ ....
• 2 k 2

Substituting for j = - ~p 2+ q the covariance reduces to
pq

_1_(p2i_q2k)2 = !fJ2.
8pq

Thus there is no correlation due to dominance.

"From the twenty-one types of double CQusinship pairs may be picked, the proportions of which are shown
in the table:

p'(P+;I;q)'
h>'q(p+;I;q)

-hp 2q2

fP'q(p+;I;q)
tpq(p' +~,>pq +q')

fpq'(;I;p+q)

-h;p2q2
fpq'(;I;p+q)
q'(;I;p + q)'

which agrees with the table given by Snow for ordinary first cousins. I caIUlot explain this divergence, lUlless
it be that Snow is in error, my values for ordinary first cousins leading to less than half this value for the

2 M'S
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correlation. Simplifying the quadratic in i, i, k, which is most easily done in this case by comparison with the
avuncular table, we find for the correlation of double cousins

1
40-,(7'+!6'),

showing that double cousins, like brothers, show SOlue Rimilarity in the distribution of deviations due to
dominance, and that with these cousins the correlation will in gp,neral be rather higher than it is for unclo
and nephew."

Double cousinship is more complicated. Suppose the cousins are such that the two fathers
come from one sibship and the two mothers from another. There are therefore 36 possibilities of
which it is only necessary to consider 21 by symmetry. In the 6 x 6 table the individual entries
are 3 element vectors whose components are proportional to the frequencies of A , A

"
A l A. and

A.A. in the progeny of a mating between individuals chosen from these sibships. Double cousins
are the results ofindependent choice of pairs from the same sibships in this way. We can therefore
construct a 6 x 6 table (Table G) in each cell of which we have first the probability that the two

TABLE G

1'8 4p'q 2p'q' 4p'q' 41)oq3 p'q'

1 0 0 9 3 0 1 1 0 I 1 0 1 3 0 0 0 0
0 0 0 3 1 0 1 1 0 1 1 0 3 9 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J6p 8q' 8p'q3 l(jp'q' 16p'q' 4p 3q'

81 54 9 9 12 3 9 12 3 9 30 9 0 0 0
54 36 6 12 16 4 12 16 4 30 100 30 0 9 3

9 6 1 3 4 1 3 4 1 9 30 9 0 3 1

4p'q' Rp'q' Rp'q' 2p'q'

1 2 1 1 2 1 1 4 3 0 0 0
2 4 2 2 4 2 4 ](J ]2 0 1 1
I 2 1 1 2 1 3 12 9 0 1 1

16p'q' I fip 3q5 4])2qll

1 2 1 1 4 3 0 0 0
2 4 2 4 Hi 12 0 J 1
1 2 1 3 J2 9 0 1 1

](ip'q' 4pq'

1 G 9 0 0 0
G 36 54 0 1 3
9 54 8J 0 3 9

qR

0 0 0
0 0 0
0 0 1

corresponding sibships have been chosen and then a 3 x 3 matrix whose elements are proportional
to the probabilities of the three genetic phases in the two double cousins. It is more convenient
to enter the matrix with numbers which are only proportional to the probabilities and not equal
to them, as in this way we avoid the use offractions. To obtain the probabilities it is necessary to
divide each element by the sum of all the elements in the matrix.
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12 3)
16 4 ,
4 1

(
9 12 3)

!p5q2 12 16 4 .
3 4 1

Thus if one of the connecting sibships corresponds to the symbol (0.1. 0) and the other to
(3. 1.0), the vector given in Fisher's 6 x 6 table is (3.4.1), and the contribution to the covariance
table will have elements proportional to

(

9
(3.4.1)'(3.4.1) = 12

3
and since the corresponding probability is

(4p3q) X (2p2q2) = 8p5q3,

the sum of the elements of the matrix is 64, and there is auother equal contribution from the
matrix situated symmetrically on the other side of the main diagonal, the contribution to the
covariance table is

The empty cells are obtained by symmetry. Multiplying by the probabilities, the reciprocal of
the sum of the elements of each matrix, and adding, we check Fisher's table for double cousins.
The difference ofthis table from the uncle-nephew table is

-fop2q2 - kp2q2 l 6p2q2
_ kp2q2 !p2q2 _ kp2q2

l6P"q2 - kp2q2 l6P"q2

which gives a term iop2q2(i - 2j + k)2 = ,' 682,

and the correlation of double cousins is therefore

Notice that the double cousin table is necessarily symmetric.

" For ordinary first cousins I find the following table of the distribution of random pairs drawn from the
six types of ordinary cousinship:

!p'(4p+q)
!p'q(7p+q)

!!p'q2

1 7 2 "
which yields the correlation "8 U2'

!p'q'(7p+q)
!pq(p2 + 14pq +q2)

!pq'(p+ 7q)

!p2q2
! pq2(p+7q)
!q'(p+4q)

Ordinary first cousins are connected by a single sibship. They are therefore each the result of
the mating of one of the sibships in Fisher's 6 x 6 table with a mate chosen at random. We can
therefore divide all first cousins into 6 classes according to the type of connecting sibship and the
covariance table is the sum of 6 tables. Each of the latter is obtained by multiplying the
probabilities ofthe connecting sibship by the matrix obtained by the column into row product of
the last row of Fisher's 6 x 6 table by itself. Thus for example the first of these is (p. q. 0) with
probability p4, and its contribution is

p'(p.q.O)'(p.q.O) = p,(~; ~; ~).
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The sum of all these is

-l.(SpS +9pq)
-l.(p + Sq)S
I'o(pq + SqS)

l. (SpS +pq)
I'o(Sp+q)S

-l.(9pq + SqS)(

ipS
+ 6p SqS ip

ipq

-fopq )
-l.(pq + SqS)

J_qS
1.

I'o(9~~:sqs)) + q4 (~ ~S p~)
-t.qS 0 pq qS

Adding these we obtain Fisher's cousin table which is checked except for the entry in the first
row and second column which should be

ipSq(7p +q).

we get

This table is necessarily symmetric.
Calculating the covariance and subtracting

(pSi +2pqj +qSk)S = 0,

ipq(pi-(p-q)j+qk)S = 16~q(PSi-qsk)S = 1/3s,

so that for single cousins there is no dominance component in the correlation.

6n 6 12 613'

621 6 22 623~

6 31 632 633~

H In a similar way the more distant kin may be investigated, but since for them reliable data have not yet
been published, the table already given of genetic oorrelations will be a suffioient guide.

"8. Before extending the above results to the more difficult conditions ofassortative mating, it is desirable
to show how our methods may be developed so as to inolude the statistioal feature to whioh we have applied
the term Epistacy. The combination of two Mendelian factors gives rise to nine distinct phases, and there is
no biological reason for supposing that nine such distinct measurements should be exactly represented by the
nine deviations formed by addingi,j, or k toi',j', or k'. Ifwe suppose that i,j, k, i',j', k' have been so chosen
as to represent the nine actual types with the least square error ~ we have now to deal with additional quantities,
which we may term

connected by the six equations, five of which are independent,

p2 ell + 2pqe21 + q2 e31 = 0,

p2e12+2pqe22+q2e32 = 0,

p 2e13 + 2pqe23+q2633 = 0,

p'2 6n +2p'q'e12+q'2e13 = O~

p'2e21 +2p'q'e22+q'2e23 = 0,

p'2 e31 +2p'q' e32+q'2e33 = 0."

The definitions of i,j, k are now modified. Suppose that we have two non-linked loci at which
the genotypes are Al Al , Al As, As As and B l B l , B l B s' B sB2. Let their effect in combination be
all> ... so we have Table H.

TABLE H

B.B. B.B, B,B,
i' j' k'

AlA. i all a12 a.,
A.A, j a 21 ass a"
A,A, k a'l a" a"

We assume random mating and put p, p', for the frequencies of A l and B l respectively. We also
assume that random mating has been occurring in the population for a sufficiently long time for
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the frequencies of the genotypes AlAlBlBl, AlA,BlBI> etc., to have attained their limiting
values pOp"~, (2pq)p", etc.

The values i,j, k, i',j', k', are now chosen so the sum of the corresponding values for the two
loci represent arl' ar" '" as closely as possible in the sense of least squares. Write

en = an-i-i',

e12 = a12 -i-j',

e13 = a13 -i-k',
. .,

e21 = a21-J-~,

e" = a,,-j-j',

Then we want to minimize the sum

e,. = a,.-j-k',

e31 = a31 -k-i',

ea, = aa,-k-j',

e•• = a•• -k-k'.

81= p"q'"erl + 2p'?p'q'er, +p"q'"e~. + 2pqp"e~1 + 4pqp'q'e~, + 2pqq"e~.

+ q'p"e~l+ 2q'p'q'e~, +q'q"e~•.

Differentiating 81 with respect to i,j, k and i',j', k' we get the six equations given above by
Fisher. This process is exactly analogous to estimating row and column effects in an experiment
in which rows and columns are orthogonal, the orthogonality being here a consequence of
independent distribution of the two factors. Since the addition of a constant to all the a's makes
no difference, we can choose the latter so that the mean of i,j, k and the mean of the i',j', k' are
both zero. This means that

pOi + 2pqj + q'k = 0, p"i' + 2p'q'j' + q"k' = O. (XII a)

Of the six equations only five can be independent in general for if we multiply the first three
by p", 2p'q', q", respectively and add we get the same result as multiplying the second three by
p', 2pq, q', and adding. Thus only 4 = 9- 5 ofthe e's can be varied and the epistatic and dominance
relations arising from two different factors require four constants for their definition.

"This is a complete representation of any such deviations from linearity as may exist between two factors.
Such dual epistacy, as we may term it, is the only kind of which we shall treat. More complex connections
could doubtless exist, but the number of unknowns introdu,ced by dual epistacy alone, four, is more than can
be determined by existing data. In addition it is very improbable that any statistical effect, of a nature other
than that which we are considering, is actually produced by more complex somatic connections.

The full association table between two relatives, when we are considering two distinct Mendelian factors,
consists of eighty-one cells, and the quadratic expression to which it leads now involves the nine epistatic
deviations. A remarkable simplification is, however, possible,. since each quantity, such as e21, which refers
to a partially or wholly heterozygous individual, is related to two other quantities, such as ell and 6 S1' by
jnst the same equation as that by whichj is related to i and k, and occurs in the 9 x 9 table with corresponding
coefficients. The elimination of the five deviations e21, e12, 6S2' e23' 6 22 is therefore effected by rewriting the 9 x 9
table as a 4 x 4 table, derived from the quadratic in i and k corresponding to the relationship considered."

By the method of definition we can split the contribution to the total character due to the genes
at the A and B loci into seven components!

1 1 , II

X = Xl +x,+XS+Xl+x,+x. +x.'

where Xl is the effect due to the' first' gene at the A locus (e.g. that inherited from father), X, the
effect due to the second gene at the first locus (e.g. that from mother), and Xs is the deviation from
linearity due to dominance. Thus Xl +X, + X. = i,j, k according as the genotype is Al AI' Al A" or
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A.A2 • x~, x;, x; are the corresponding components at the second locus, and x; is the 'epistacy'
deviation.

We have already seen that X, 'X2'X3' are uncorrelated in pairs, and the same holds good for
x~, x;, x;. The latter are also statistically independent ofx,, x2, X 3 because they are at an unlinked
locus.

It also follows from the set of equations such as

p2ell +2pqe21 +q2e3, = 0,

that for any fixed genotype, such as B,B" at the second locus, the mean value of x;( = ers) is zero.
Thus x; is uncorrelated with the effects x~, x;, x;, at the second locus. A similar argument holds
for the first locus. This could also have been seen from Least Square Regression Theory.

The seven components above are therefore uncorrelated between themselves, and the variance
of x decomposes into seven orthogonal components,

varx = ~ val' (xi)+ ~ val' (xi) +val' (x;).

We can similarly write the value, X, of the character for a relative as

X = X,+X2+X3+X~+X;+X;+X;,

. where the Xi have been numbered in such a way that any genes shared by the two relatives will
affect only Xr and X r (or x; and X;) with the same suffix. Then because of this numbering and the

previous results, ( X) '<' (X) '<' (' X') ( "X")COY x, = ~cov xrl r +~cov Xr , r +COV X4, 4·

The only terms that therefore remain to be considered are val' (x;), val' (X;), and cov (x;, X;).

val' (x;) can be written

p'2{p2ei, +2pqe~, +q2e~,}+2p'q'{p2ei2 +2pqe~2 +q'e~.}+q"{p2eia +2pqe~a +q'e~a}

=p'2A+2p'q'B+q"O, say.

We can treat each of the quadratic forms A, B, 0 in the same way. Oonsider the first. This is a
quadratic form in ell' e2" e31 whose matrix is

(

P2 0
o 2pq
o 0

~),
q2

where the rows correspond to e11> e." e31 and the columns also to ell' e." e3,. We turn this into
a quadratic form in e11> ea, only by using the relation

1
e31 = 2pq ( - p2ell - q2e3,),

which is one of the equations derived by least squares. The quadratic form A then becomes

P2e2 +2pq {p2ell +q2e~,}.+q2e2 = (p2 +~) e2 +pqe e + (q2 +qa) e2
11 2pq 31 2q 11 11 31 2p 31'

which has the 2 x 2 matrix

2

~q (p +2q)~pq
2

!pq ip (2p +q)



P. A. P. MORAN AND C. A. B. SMITH 25

where the rows correspond to ell> eal respectively, and the columns similarly. Exactly the same
relationships apply to Band 0 resulting in the same 2 x 2 matrix. We can therefore write

. ( ") _(. pa){'.. 2'" '•• } {" 2 ' , + '. }varx4 - P+iq pell+pqe12+qela+pqpelleal+pqel.ea. qelaeaa

+ (q.+~) {p"e5l + 2p'q'e5. +q"e5a}

= (P'+f;)D+pqE+ (q'+i~)F', say.

We now apply the same procedure to D, E, F. D becomes

(
'2 pl3) 2 " -.J ( '. + q'a) •p +Zq' ell +p q ell e13 ,- q iii' ela,

E b ( '2 Pl3) "[ " J ' I ('2 q'3)ecomes p +Zq; ell eal +2P q ell eaa +"P q ela eal + q +2p' ela eaa,

and F becomes (p'"+ :~:) e5l +p'q'e"l eaa + (q'"+~~:) e5a'

We have therefore reduced the quadratic form in the nine· variables ell> ... , eaa to one in four
variables ell> ela, ea!> eaa. This is

( p'+f~) {(p" +:~~) e~l+p'q'ell ela + (q" +,a,) e~a}

{( '2 p/3) 1 ' 1 1 ' , ('2 q13) }+pq p +'iqo ell eal + liP q ell eaa +"p q ela eal + q +2p' ela eaa

+ (q. +~) {(p" +~~~) e5l +p'q'eal eaa + (q" + ~;,) e5a)'

On taking out a factor 1{4pqp'q' this agrees with Fisher's result.
The method of deriving the above can be described in algebraic form. Given the matrix '11

above and the corresponding matrix T. corresponding to p, q, we form the direct product, which
is of order 4, and is obtained by replacing each element of T" by the product of this element
considered as a scalar with the matrix Tl'

The second expression below for this quadratic is verified by expanding all the above terms
and subtracting the terms obtained from the expansion of

(p'p'"ell - p"q'"ela - q"p'"eal +q"q'"eaa)',

whence we obtain four similar expressions of which a typical one is

2pqp'aq'(pell +qeal)'+2pqp'4(pell +qeal)" = 2pqp'3(pell +qea1)',

because p' +q' = 1. Thus the four similar terms in Fisher's second expression below are correct
although they are only of the seventh degree inp, q,p', q', and not of the eighth as in the original
quadratic form.

" Thus the variance, found by squaring the individual variations, is derived from the 3 x 3 table

p'
2pq

q'
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which yields the 2 X 2 table ;;<P+ 2q)

tpq

tpq

:; (2p+q)

and the quadratic in 6 n , 613' 6 31) 633

1
-.:;;-;-; [(1' +2q) (1" +2q')1"1'" "~,+3 similar terms +2p'q2p"(p' +2q'J "n "31+3 similar terms
~.t'qp q

+2p2q2pf2ql2(611 633 + 618 631)]'

which MSO takes the form

-tpq

q'j4p

p'j4q

-tpq

1
-.:;;-;-; [(pap '2ell - p2q'2e13 - q2p '2es1 + q2q'2e33 )2 + 2pqp'3(pell +qeS1 )2 +3 similar terms].
~.t'qp q

The parental table

yields
1

~-----.,--,[p'p'2" -p'q"" _q"""'" +q'q"" ]'.16pqp'q' 11 13 1-' 31 33

The parent-offspring table has 9 x 9 = 81 cells. In order to reduce it we use the same kind of
transformations as in discussing the variance. Consider terms of the form

ermesn'

where m, n are fixed and r, 8 = 1,2,3. From the parent-offspring table (Table C above) with
P = p2, Q= pq, R = q2 we obtain the following similar table (Table I), using the fact that the two
loci segregate independently.

TABLE I

Parent

o
pq'
q'

"'n
p'q
pq
pq'

"'n
1"
p'q
o

,-- A- -----.,

"'nOffspring

We now use the formulae:

1 1
e'm = - -2 (p'elm +q2e3m), e'n = - -2 (p2eln + q2e•n)·pq pq

We turn the quadratic form above (which has 6 variables ifm *n and 3ifm = n) into a quadratic
form with 4 variables if m *nand 2 variables if m = n. We then get the array given in Table J,

TABLE J

",n ",n "3.
",m p'j4q 0 -tpq
"2m 0 0 0

"'m -tpq 0 q'j4p

which we can regard as a 2 x 2 table. Using this and the similar table with p', q', the direct
product ofthe two matrices gives an array whose elements are the elements ofTable K multiplied

by 16 1 , ,. The corresponding quadratic form is obviouslypqpq

1 {2'2 2 '2 2'2 + 2 '2 }2
16 "p p ell - P q e 13 - q P e3l q q e33 .pqpq
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TABLE K

27

611

631

613

683

" and the fraternal table

611

p4p '4.

_p2q2p '4
_p4p '2g'2

p2q2p '2q'2

631

_p2q2p '4
q4p '4
p2q2p '2q'2
_ q4p '2q'2

p2/4q

6 13

_ p4p '2q'2
p2q2p /2q'2
p4q'4
_p2q2q'4

6"

p2q2p'2q'2
_ q4p'2q'2
_p2q2q'4.

q4q'4

q2/4p
leads us to the simple expression

I
=_70[P'p'3e2 +p'q'3e?, +q3p'3eZ +q'q'3e2 l."16pqp'q' 11 13 31 83

Applying the same argument to the brother-brother table (Table E) and eliminating e.m and
e.n from the corresponding quadratic form we get the array of Table L, which combined with the
similar result for p', q' gives

1=_.... {p3p'3e• +p3q'3e' +q3p '3e' +q3q'3e }16pqp'q' 11 13 31 33 .

TABLE L

'1.
p2/4q

o
o

q2/4p

~(2p+q)
16q

" For uncles and cousins we obtain respectively! and -.fa of the parental contribution, while for double
cousins the table

--i,€pq

and a quadratic similar to that for the variance."

q2
16p(p+2q)

The same technique is applied to the uncle-nephew table to give TableM.

TABLE M

'1.
p'/8q
-tpq

'3.

Since this is one-half ofthe corresponding table for parent--offspring, the epistatic contribution
to the covariance between uncle and nephew is i that of the epistatic component in parent­
offspring covariance.

Cousins and double cousins are then easily treated in the same way.

"9. With assortative mating all these coefficients will be modified. There will be association between
similar phases of different factors, so that they carmot be treated separately. There will also be an increase in
the variance.

" We must determine the nature of the association between different factors, and ascertain how it is related
to the degree ofassortative mating necessary to maintain it. Then we shall be able to investigate the statistical
effects of this association on the variance of the population and on the correlations.
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_~_l__ e-x~l2Vdx;;;;;M
.j(2rrV) ,

\I If fJ; be the marital correlation, then in a population with variance V the fb~quency of individuals in the
range dx is

and the fi'equency in the range dy is 1 'Or------ e-Y• :IV dv ::;: N·
.j(2rrV) ,

but the frequency of mating::: between these two groups il) not simply MN, as would be the case if there were
no marital correlation, but

2rrV-Jh--=:u'l exp {- T=--!",ai X~_--=-_2:~Y +Y') dx dy,

whioh is equal to /if:~-;i)exp {- ~'X'2-:-vii:-'#W2112) .
" In studying the efTect ofassodative mating we shall require to know the frequency ofmatings between two

groups, each with a variance nearly equal to that of the whole population, hut centred about means a and b.
The frequencies of such groups in any ranges dx, dy can be written down, and if the chance of any mating
depends only on x and y, the frequency of mating between these two groups can be expressed as a double
integral. IfM and N are the frequencies in the two groups, the frequency ofmating between them is found to be

MN epablV."

The idea in the above section is that non-randomness in mating is due to a tendency: for the
biometric measurements in the two mating individuals to be correlated. Suppose that these two
measurements are x and y, and that since they are the result of a large number of independently
segregating factors they can be supposed to be normally distributed. It is assumed that there is
no epistasis. We take their means as zero and their variances as V. The probabilities that they lie
respectively in ranges (x, x +dx) and (y, y +dy) are taken as M and N, and it is assumed that their
joint probability distribution is given by the bivariate normal distribution above with /h as
correlation coefficient.

The expression

can be regarded as a weighting factor giving the relative probability of a mating between two
particular individuals which are known to have the measurements x and y.

Now suppose that these two individuals are chosen at random out ofnormal populations which
are known to have the means a and b respectively and variances equal to V. Their relative
probability of mating is given by

2;vd=:{.iz)t IIexp (- (X:;;)2 - (y:;t)2 _/h2~~2~~i!/hjty2}dXdY

= i;V(11_/h2)tIIexp ( - 2V(~,u2)}dXdY,
where

where

W = (x-m l )2- 2/h(x-m l ) (y-m2)+ (y-m2)2+K,

rnl = a+/hb, 'ln2 = b+/ha and K = -2/hab(1-/h2).

Integrating out, the expression becomes
lJ.ab

expr'­
V

as required. Notice that this result is exact so long as the bivariate distribution is truly normal.
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When I" *0 the non-randomness of the mating has two effects: (1) The Hardy-Weinberg
equilibrium for each individual locus is destroyed. (2) The zygotic frequencies for different
factors are no longer independent. Hence the average values of individuals of the form Al AI'
Al A. and A. A. cannot be taken as i, j and k, but depend also on other loci. It is this which
introduces the essential complication and requires the introduction of the condition that the
population is stationary.

Fisher now investigates the effect of assortative mating on the genotype frequencies, using the
condition that these frequencies are the same in the offspring generation as in the parent genera­
tion. This implies that the probability of being a parent is independent of genotype so that there
are no selective differences. It is possible to devise schemes of assortative mating in which, for
example, the extreme types are less likely to find suitable mates. In such a case the distribution
amongst the offspring of all the matings would be that of the population as a whole but not the
same as that amongst' parents'.

We first consider the effect on the frequencies of the three phases of a single factor. Write
D, H andR for AlAI' AlA. and A.A•. Consider the effects of the various types of mating listed
below:

Mating Offspring lVlating Offspring

DxD D HxH !DHHHR
DxH ~DHH HxE ~HHR

DxR H RxR R

The first two and last two of these matings will, in an indefinitely large population, produce no
change in zygotic frequency since the relative proportions of the phases in the offspring are the
same as those of the parents.

Out ofall possible matingslet the frequencies ofmating D x Rand H x H befl andf.respectively.
Then the contribution of these matings to the next generation will be such that D, H, R are in the
proportion

whilst the proportion of D, Hand R amongst the mates entering into these matings is 1, ·L t.
If these ratios are to be the same we must havef. = 2fl' LetI,J,K be the means of the character
in the individuals which are D, Hand R. Since there are supposed to be many loci contributing
to the character, the contribution of anyone locus to the whole character is small, so that

IjVt, JjVt , KjVt

are all small and the variance of the character for a given phase at this locus is practicallyV.
Hence the frequencies of these matings are proportional to

e~IK/V and e~J'iV,

by the above theory, and IKjV, J2jK are quantities of the second order of smallness. Hence to

a high degree of approximation 4Q2e~J'iV = 4PRe~IKiV.

Expanding the exponentials and neglecting squares of J2jV and IKjV, we get

PR_Q2 = (l"jV){Q2J'-PRIK} = I"(Q'jV) {J2-IK},

on observing that P R - Q2 is of the second order ofsmallness. Note that this is an approximation.
We now put
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1
J = -2 (p'I +q'K),pq

Then 81 +28. +83 = O. The gene frequency of A 1 must be

p=P+Q=~+n+~+~=p+~+~

and hence 81 +8. = O. Similarly, 8. +83 = O. Hence

81 = - 8. = 83 = 8, say.

If (XIII) is to be satisfied with (J' - IK) V-1 small, 8 must be small also, and substituting we get

(p'+ 8) (q'+ 8) - (pq- 8)' = (pq-8)' p,(J'-IKl{V,

and to a first approximation 8 = p'q'ft(J'-IK){V,
so that (XIV) follows.

The deviation in P, Q, R, from the values they would have if the Hardy-Weinberg equation
held, are of the second order of smallness when

I{Vt, J{vt, K{Vt

are regarded as being of the first order of smallness. Equation (XV) follows from the definition of
I, J, K and we can use this to eliminate J. The first approximation to J is got by putting p', pq,
q' for P, Q, R so that

and putting this in the expression for <X we get

ft{!(p'I +q'K)'-p'q'IK} = £ (p'I -q'K)'
V 4V'

"10. We shall apply this expression first to determine the eqnilibrium value of the frequencies of the three
phases ofa single factor. Ofthe six types of mating which are possible, all save two yield offspring ofthe same
genetic phase as their parents. With the inbreeding of the pure forms D x D and R x R obviously no change is
made, and the same is true of the crosses D x Hand R x H, for each of these yields the pure form and the
heterozygote in equal numbers. On the other hand, in the cross D x R we have a dominant and a recessive
replaced in the next generation by two heterozygotes, while in the cross H x H half of the offspring return to
the homozygous condition. For equilibrium the second type of mating must be twice as frequent as the first,
and, if 1, J, and K are the means of the distributions of the three phases,

4Q'eJ""IV =4PRe#IK/V.

"Since J'jV and 1KjV are small quantities, we sball neglect their squares, and obtain the equation

R -Q' _ Q' J'-IK
P - I" V . (XIII)

J'-IK
P = p'+p'q'I"---,

V

If, as before, the two types of gamete are in the ratio p: q, the frequencies of the three phases are expressed
by the equations

" It is evident that

J'-IK
Q =pq-p'q'I"-V'

J'-IK
R = q'+p'q'/1-=-­

V

P1+2QJ+RK=O,

(XIV)

(XV)

and this enables us, whenever necessary, to eliminate J, and to treat only I and K as unknowns. These can
only be found when the system of association between different factors has been ascertained. It will be
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J'-IK
p'q'p, V '

observed that the changes produced in P, Q, and R are small quantities afthe second order: in transforming
the quantity

we may write - (p'I +q'K) for 2pqJ, leading to the form

:V(P'I -q'K)',

which will be found more useful than the other.
"11. The nine possible combinations of two factors will not now occur in the simple proportions PP', 2PQ',

etc., as is the case when there is no association: but whatever the nature of the association may be, we shall
represent it by introducing new quantities, which by analogy we may expect to be small afthe second order,
defined so that the frequency of the type

that of

and that of
andsD on."

DD' is PP'(I +!11) ,

DB' is 2PQ'(l +!,,),

DR' is PR'( I +!,,),

(XVI)

We now have to study the effect of assortative mating on the joint distribution of pairs of
factors since such pairs are not now distributed independently of each other.

Write D, H, R for the phases of one factor with frequencies P, Q, R, and D', H', R' and P', Q',
R' for the second factor. The joint frequencies can then be expressed by introducing new quantities
Iw "''/33 in the manner shown in Table N.

TABLE N

2nd factor

1st factor D' H' R'
,------A---, P' Q' R'

D P PP'(I +!11) 2PQ'(I+!12) PR'(I+!,,)
H Q 2QP'(1+!21J 4QQ'(1 +!,,) 2QR'(1+!,,)
R R RP'(I+!,,) 2RQ'(1 +!,,) RR'(l+!,,)

(Notice that Rand R' are used in two different senses.) Since the sums of the rows and the
columns must equal the corresponding row and column frequencies we get (XVI). Since the
first three of these equations when multiplied by P, Q, R and added are equal to the second three
multiplied by P', Q', R' and added, only five of these equations are independent, and so four of the
!,s are independent. We take these as/w Ils, 131 andfss'

" Formally, we have introduced nine such new unknowns for each pair of factors, hut since, for instance,
the sum of the above three quantities must be P, we have the six equations

P'!ll + 2Q'!12 + R'!" = 0, P!ll + 2Q!" + R!" = O'}

P,!" + 2Q,!" + R,!" = 0, P!" + 2Q!" + R!" = 0,

P,!" +2Q,!"+R,!,, =0, P!12+ 2Q!" +R!" =0,

five of which are independent. The unknowns are thus reduced to four, and we shall use!u,!13' !31' !aa, since
any involving a 2 in the suffix can easily be eliminated.

H We have further
I = ~H(P:~:"+2

Q
:':12 +R:k:12),}

J = J + "'£(P <'121 + 2Q J '1" + R k'j,,), (XVII)

K = k+ "'£(P'i,!" +2Q'j'j" +R'k'!,,),



32 COMMENTARY ON FISHER

(XVIII)

v =~(Pi'+2Qj'+Rk') + 2~{PP'(1 +fll) ii' + 8 other terms},

~(Pi'+2Qj'+Rk') + 2"Z{PP'ii'jll + 8 other t,erms},

V = ~(Pil+ 2Qj.l +RkK)."

in which the summation is extended over all the factors except that one to which i,;", k refer. Since we are
assuming the factors to be very numerous, after substituting their values for the j's we may without error
extend the summation over all the factors. The variance defined as the meansquare deviation may be evaluated
in terms of the j's

which reduces to

so that

We are assuming no epistasis, but the non-randomness of mating makes the average value of
individuals which are D, Hand R for some particular locus not equal to i,j, k, which are the values
they would have ifthe genes at the other loci were fixed. Thus ifthere are just two loci the average
value of individuals which are D for the first locus is got by averaging the deviations of DD',
DH', DR', and so is

P-'{(i +i') PP'(l +f11) + (i + j') 2PQ'(1 + f,.) + (i +k') PR'(l +f'3)}

= P-'{i(PP'(l +fn) + 2PQ'(1 +f,.) +PR'(l +f'3)) +P(i'P' + 2j'Q' +k'R')

+ P(i'P'f11 +2j'Q'f'3 +k'R'f13)}'

By (XVI), the definition ofi',j', k', and offwf,.,f'3 this is equal to i + (i'P'fn + 2j'Q'f12 +k'R'f'3)'
and summing over all other factors we obtain (XVII). Notice that we then have

PI + 2QJ+RK = O.

Suppose that the biometric measurement can be written as the sum, LXi' of a large number of
factors. By definition the mean value of each Xl is zero and the variance is

E(LXi )' = "L.EX~+ 2:..E(XiX;),
iH

and inserting the above values we get

"L.(Pi'+ 2Qj2 +Rk') + 2"L.{PP'(1 +fn) ii' + 2Q'P(1 +f12)W +PR'(l +f,3)ik' + 2QP'(1 +f.,)ji'

+ 4QQ'(1 +f ••)jj' + 2QR'(1 +f'3)jk' +RP'(l +f3') ki' + 2RQ'(1 +f •• )kj' +RR'(l +f ••) kk'}.

The second summation is taken over all distinct pairs of factors. The terms within the second
summation not involving!,s add to zero, and using (XVII) we obtain (XVIII).

H 12. We can only advance beyond these purely formal relations to an actual evaluation of our unknowns
by considering the equilibrium of the different phase combinations. There are forty-five possible matings of
the nine types, but since we need only consider the equilibrium of the four homozygous conditions, we need
only pick out the terms, ten in each case, which give rise to them. The method will be exactly the same as W0

used for a single factor. Thus the matings DD' x DD' have the frequenoy

PP' ,PP'. (I + fll) (I +fll) exp{,u(I +I')'jV},

which for our purpose is equal to P'P"[l + 2fll +(,ujV) (I + 1')'].

The number ofpossible pairs ofphases is 9 + i(9) (8) = 45, but we only need to consider the four
homozygous types. Then a mating of type DD' x DD' will have a relative frequency

{PP'(l +f11)}' exp {p(1 +I')'I V}

which is approximately (PP')' {I + 2f11 + (pi V) (I + I')'}.

We consider all the matings which give rise to the four homozygous types and it is sufficient,
by symmetry, to consider the terms which give rise to DD'. For single factors the only matings
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which give Dare D x D, D x Hand H x H. Thus the ten relevant matings with their relative
frequencies and the proportion of DD' in their offspring are given in Table O.

Mating

DD'xDD'
DD'xDH'
DH'xDH'
DD'xHD'
DD'xHH'
DHxHH'
HD'xHD'
HD'xHH'
HH'xHR'
DR' x T-lD'

Frequency

(PP')'{I + 2/11 + (pIV) (I + r)'}
2P'P'Q'{1 +111 +1" +(pIV) (I +I') (I +.1')}
4P'Q"{1 +2/"+ (pIV) (I +.1')')
2PQP"{1 +111 +1" + (pIV) (I + I') (.1 + 1')}
4PQP'Q'{l+III +1" +(pIV) (I +I') (.1 +.1')}
8PQQ"{1 +1" +1,,+ (pi V) (I +.1') (.1 +.1')}
4Q'P''{1 + 2/2l + (pi V) (.1 + I')'}
8Q'P'Q'{1 +1" +1,,+ (pIV) (.1 + I') (.1 +.1')}
16Q'Q"{1 +2/" + (pIV)(.1 +.1')')
4PQP'Q'{l+/" +1'1 + (pIV) (I +.1')(.1 +1')}

Probability
of DD'

In cases where the pairs of mating individuals are different the above frequencies must be
multiplied by two. Adding all together we obtain the left-hand side of equation (XIX). The fact
that these together equal the right-hand side expresses the condition that the frequency of DD'
does not change from generation to generation.

H Collecting now all the matings which yield DD', we have for equilibrium

P'P"[I + 2/11 + (pIV)(1 +I')']+ 2P'P'Q'[l +/11 +1,,+ (pi V) (I + I') (I +.1')]

+ 2PQP''[1 +/11 +1" + (pIV) (I +1') (.1 +1')]+ 2PQP'Q'[l+III +1,,+ (pIV)(1 +1') (.1 +.1')]

+ 2PQP'Q'[1 +1"+1" + (pIV) (I + .1') (.1 +1')] + P'Q"[l + 2/,,+ (pIV) (I +.1')']

+ Q'P"[I + 2/2l + (pIV)(.1 +1')'] + 2PQQ"[1 +/1' +1,,+ (pIV) (I +.1') (.1 +.1')]

+ 2Q'P'Q'[l +12l +1,,+ (pIV) (.1 + 1')(.1 +.1)']+ Q'Q"[1 + ~f22+ (pIV) (.1 +.1')']

= PP'( I +Ill) (XIX)
"Now since

(P+Q)' (P' + Q')'-PP'(P+ 2Q+R) (P' + 2Q' +R') = (Q'-PR)P' + (Q"-P'R') P+ (Q'-PR) (Q"-P'R')

the terms involving only P and Q, reduce (XIII) to the second order ofsman quantities."

Consider all the terms on the left-hand side of(XIX) which do notinvolvef's orfl. These sum to

(P+Q)2(P' +Q')2.

The equation immediately following (XIX) is an algebraic identity. If quantities such as IV-t
are regarded as being ofthe first order ofsmallness, Q2 - PR, and Q'2 - P'R' are ofthe second order
of smallness and we can neglect (Q2 - PR) (Q'2 - P'R'). Hence the difference between the sums of
terms on the left- and right-hand sides not involving f's or It is equal to

(Q2-PR)P' +(Q'2-P'R')P = -P'Q2(flIV) (J2-IK) -PQ'2(flIV) (J'2-I'K')

by using (XIII), the error being ofthe fourth order. There is a misprint in the paper, it being (XIX)
which is reduced and not (XIII). Fisher probably means 'by (XIII)'.

Next we pick out of (XIX) the terms involving It and these sum identically to

(flIV){(P' + Q'):(PI + QJ) + (P+ Q) (P'I' + Q'J')}2.
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and we obtain

From this we eliminate J and J' by using the identities

PI +2QJ +RK = 0, P'I' +2Q'.J' +R'K' = O.
We then obtain

(p./4 V){(P' +Q') (PI -RK)+ (P+Q) (P'I' -R'K')}2 = (p./4V) {p'(PI -RK) +p(P'I' -R'K')}2,

on writing p' = P' +Q', p = P +Q. Expanding the square and subtracting the previously

obtained term, we get (p./2V)pp'(PI -RK) (P'l' -R'K').

Next consider the terms on the left-hand side involvingf's. Adding, and using p, p', we get

2PP'pp'fn + 2PQ'pp'fl2+ 2QP'PPJ2l +2QQ'pp'f••·

We get rid of the suffix 2 by using

2Q'f" = - P'fn - R'f,.,

2Qf2l = -Pfn-Rf."

4QQ'f2' = PP'fn +PRJ,. +RP'f.l +RR'f••,

!pp'{PPJn - PRJl. - P'Rf., +RR'f••}.

Adding this to the term inp. and equating to the right-hand side we obtain (XIXa). Writing down
the three other equations, and adding and subtracting we get (XX) on using p +g = p' +g' = 1.
Substituting back in (XIXa), and putting P = p2, P' = p2 which we can do to the degree of
approximation to which we are working, we get the four equations (XXI) which give the f's
explicitly.

"- (I'I V) [P'Q'(J'-IK) +PQ"(J"-I'K')] = - (1'/4 V) [P"(IP-KR)'+p'(l'P' -K'R')'].

Also collscting the terms in 1 and J, we find

(I'I V) [(P' +Q') (IP+JQ) + (P+Q) (1'P' +J'Q')]',

which yields on eliminating J, (1'/4 V) [p'(IP-KR)+p(l'P' -K'R')]',

while the result of oollecting aod transforming the terms inj is

t.pp,[PP'jll-PR'j13-P'Rj31 +RR'j"I·

Hence, if the frequenoy of the type DD' is unchanged

(pI2V)pp'(IP-KR) (1'P' -K'R') +t.pp,[PP'jll-PR'j,,-P'Rj31 +RR'j,,] = PP'jll' (XIXa)

"Now the corresponding equations for the types DR'. RD', R'D' may be obtained simply by substituting
K for I. R for P, and vice versa, as required; and each such change merely reverses the sign of the left-hand
side, substituting q or q' for p or p' as a factor.

Combining the four equations

(1'12 V) (IP-KR) (1'P' -K'R') = t.[PP'jll-PR'j13-RP'j" +RR'j,,]

so that the set of four equations

(I'I V) (IP- KR) (1'P' - K'R') =PP'jll = -pq'j" = -qp'j31 =qq'j"

gives the whole of the oonditions of equilibrium.
"13. Substituting now in (XVII), which we may rewrite,

1 = i +"Z[P'(i' -j')jll -R'(j' - k')j13]'

K = k+"Z[P'(i'-j')j31-R'(j'-k')j,,].
we have

(XX)

(XXI)

lP-KR =iP-kR+"Z(pIV) (IP-KR) (1'P' -K'R') [p'(i' -j')+q'(j' - k')] = iP-kR+A(IP-KR),
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where

or

A(I- A) = (pIV) y:'(i'P' - k'R')[p'(i' -j')+q'(j' -k')]

. (iP-kR)'= (pIV) Y:,fJ', smce fJ' =_.~

A(I-A) = p(7'IV). (XXII)

(XXIIa)

Using (XVI) we convert (XVII) into

1= i+1:{P'(i' -j')fll-R'(j' -k')flSh

K '" k+1:{P'(i' -j')fSl-R'(j' -k')fss}.

Here the summation is taken over all loci other than the particular one under consideration.
Multiplying by P and R, and subtracting we obtain

IP-KR = iP-kR+A(IP-KR),

where A = 1:(ttjV) (1'P' -K'R'){p'(i' -j') +q'(j' - k')}.

In this form the result is not useful since l' and K', which refer the loci over which the summation
is taken, occur on the right-hand side. We therefore apply the same formula as above to each of

these loci to obtain 1'P' -K'R' = i'P' -K'R' +A (1'P' -K'R'),

because the summation can be taken over all loci, the contribution of any particular one being
negligible. Then (l - A) (1'P' - K'R') = i'P' - k'R', and substituting again we get

A = l: ~ i'~~=~r{P'(i' -j') +q'(j' -k')},

A(l-A) = 1:(tt/V) (i'P' -k'R'){p'(i' -j') +q'(j' - k')},so that

(XXIIb)

and each term in the sum now refers to a single locus. We can therefore drop the dashes. To the
degree of approximation required we can put P = pS, R = q2 and

p(i -j) +q(j - k) = pi -qk+ (p -q) (lj2pq) (pOi +q2k)

= (1/2pq) (p"i-qOk),

( O' 0k)O
A(l-A) = tt 1: P ,-q

V 2pq

°= tt 1:fJo = ItT .
V V

so that finally

" It would seem that there is an ambiguity in the value of A, so that the same amount ofassortative mating
would suffice to maintain two different degrees ofassociation: we have, however, not yet ascertained the value
of V. Since this oJso depends upon A, the form of the quadratic is changed, and it will be seen that the
ambiguity disappears.

\< Supposing A determinate, we may determine the association coefficientsf for

Hence

" P (iP-kR)(i'P' -k'R') , )
pOp '111 = "(I-A)' V PP,

'" __ P (iP-kR) (i'P'-k'R') ,
pq'113- (I-A)' V pq.

I=i+ p iP-kRy:'[p'(i'_j') +q'(j'-k')](i'P'-k'R')
(I-A)' pV

. P iP-kR7'
='+(I-A)' P IT'

(XXIII)

3 M&S
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andsD

Similarly

and

] _. A iP-kR
-<+-- .

I-A P

A iP-kR
1( =k--- ---',

I-A q

J = j - . .=:!:..... p-~ (iP-kR).
I-A 2pq -

(XXIV)

We have
i'P' -k'R'
I'P' :"'-K'R' = I -A,

and substituting this in (XXI) and multiplying by pp' we get (XXIII) from which (XXIV)
follows by simple substitution using (XXII a) and (XXIIb).

II So that the sense in which the mean value of the heterozygote is changed by aSRortative mating depends
only on whether p or q is greater. In spite of perfect dominance, the mean value of the heterozygote will be
different from that of the dominant phase.

H The value of the variance deduced from the expression

V = 'i:.(Pil +2Q.iJ +RkK)

reduces to a similar form. For evidently
A

V = 'i:.a'+-A 'i:.(iP-kR) [p(i-j) +q(j -k)].
1-

Hence
A

V:::: 0"2+--r<.
I-A

(XXV)

Therefore the equation for A finally takes the form

pr' = VA(l-A) =A(l-A)u'+A"r',

and may be otherwise written A'e'-Au'+pr' = O. (XXVI) "

Here e2 = 0-2_ T 2 as usual. When A = 0 the left·hand side is W2 > O. When A = It it becomes
I;,(ft-l) (0-2_ T 2) which is negative and when A = 1 it is still negative, whilst when A is large it is
again positive. Thus the quadratic must have two roots, one in the interval (O,ft) and the other
greater than unity. A cannot be greater than unity because the right.hand side of (XXIIb) is
positive.

(XXVIa.)(ft-A')r' = (A-A')u'

"Now, since the left-hand side is negative when A :::: 1, there can be only one root less than unity. Since,
moreover,

it is evident that this root is less than tt, and approaches that value in the limiting case when there is no
dominance.

H A third form of this equation is of importance, for

A = r' = r 2 +[A/(1-A)],,:'
I' U'-A6' O"+[A/(l-A)]r'

(XXVI b)

which is the ratio of the variance without and with the deviations due to dominance.
"14. Multiple Allelomorphism. The possibility that each factor contains more than two allelomorphs

makes it necessary to extend our analysis to cover the inheritance of features influenced by such polymorphic
factors. In doing this we abandon the strictly Mendelian mode ofinheritance, and treat ofGalton's 'particulate
inheritance' in almost its full generality. Since, however, well-authenticated cases of multiple allelomorphism
have been brought to light by the Mendelian method of research, this generalised conception of inheritance
may well be treated as an extension of the classical Mendelism, which we have AO far investigated.
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" If a factor have a large number, n, of allelomorphs, there will be n homozygous phases, each of which is
associated with a certain deviation of the measurement under consideration from its mean value. These
deviations will be written iI' i 2, .. 0' i m and the deviations of the heterozygous phases, of which there are
in(n - 1), will be writteni12,j13,J"2S' and so on. Let the n kinds of gametes exist with frequencies proportional
to p, q, r, 8, and so on, then when the mating is random the homozygous phases must occur with frequencies
proportional to p2,q2,r2, .. " and the heterozygous phases to 2pq, 2pr, 2qr, ....

It Hence, our measurements being from the mean,

and since

and so on.
"Now

p'i, +q'i, +r'i,+ ... +2pqj" +2prj" +... = 0.

" As before, we define a2 by the equation

p2ii +q21:i + r2i~ +.. ,+2pqj~2+ 2pr:i~:'I+." = a 2

and choosing l,m,n, .. "so that

p'(21-i, )' +q'(2m - i,)' +... +2pq(l+m-j12)' +2pr(l+n-j,,)' +...
is a minimum, we define p2 by

41'p'+4m'q' +... +2pq(l+m)'+2pr(l+n)'... = (l',

the condition being fulfilled if I = pi, +qj" +ry" + ,
m = pi12+qi2+ry2s + ,

(l' = S(41'p') +S(2pq{l+m}'),

=S(2p(I+p)I')+S(4pqlm),

pl+qm+rn+ ... =0,

(l' =S(2pl'),

which may now be written as a quadratic in i andj, represented by the typical terms

2p'il +4p'qi,j" +2pq(p +q)jl, +4pqry12j,,·

(XU*)

(1*)

We assume there are n alleles At> ... , An with frequencies p, q, r, ... respectively. The n homo-
zygotes are A A A A

1 l' ... , n n'

with values

is zero. Hence

and there are i}n(n-l) heterozygotes A 1 A 2,A1 A 3, ... , whose values arej12'j13' ....

Put 81 = p2(21_ i1)2 + ... + 2pq(1 +m - j12)2 + .. ,
where I, m, n, ... are to be chosen by least squares to give the linear additive contribution to the
variance. (Fisher uses 8 without a suffix for summation.)

The minimization equations are typified by

o= ~ a:Z1= p2(21-i1)+pq(l+m-j12) +pr(l+n-j13) + ...

= p{l(p+ 1)-pi1-qj12-rj13-'" +qm+rn+ ...}

and since p 4' 0, l-,pi1- q.i12 -r.i13 - ... + (pI +qm + rn+ ... ) = O.

Multiplying this equation by p, the corresponding equation by q,r, ... , and adding we get

(pl+qm+ ... )+(p+q+ ... )(pl+qm+ ... ) = 0

because we have defined i1 , i 2 , ... andj12' ... so that the population mean

2' 2' 2'P '!:t +q t 2 + ... + pqJ12 + ...
pl+qm+ ... = 0,

and 1= pi1+qj12 + rj13 + ....
3-2
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The linear component of variance is then

(3' = 4{I'p' + m'q' + ...}+ 2{pq(!+m)'+ ...}.

But pI +qm + '" = 0, and therefore

p'l'+q'm'+ ... +2pqlm+ ... = O.

Taking twice this from (3' we get

f3" = (2pI2+ 2qm' + )(p+q+ ... )

= 2pI2+2qm'+ ,

and inserting the values of I, m, ... we get

(3• 2 (. . ). 2 (. . . )2= P P~l +q21.+ ... + q P212+q~.+rJs.+ ... + ...
2(p3" 3" ) 4( 2 •• 0:' ) 2( "2 2" • .• )= ~l+q ~.+ ... + P q~121.+pq-'2J12+··· + pq1l.+pr:1l3+···+P Q212+'"

+ 4(pqrj12 j13+ ...)
of which the typical term is that given by Fisher.

" Now we can construct an association table for parent and child as in Article 6, though it is now more
complicated, since the is cannot be eliminated by equation (XII*), and its true representation lies in four
dimensions; the quadratic in i and} derived from it is, however, exactly one halfofthat obtained above, so that
the contribution of a single factor to the parental product moment is tfJ'. Hence the parental correlation is

I T'

'2 0'2'

where T and u retain their previous meanings."

The association table between parent and offspring could be written down as a

tn(n+l)xin(n+l)

table but we need only to write out the typical terms. Part of these can be obtained from the
previous parent-offspring table.

For the parental types we can take A1A l and AlA•. The possible offspring types are then
typified by Al Al,Al A., AlA 3 and A. A 3• The resulting table is shown as Table P. The covariance,

TABLE P
Parental type

Offspring
type

A,A,
A,A,
A,A,
A,A,

A,A,

p'
p'q
p'r
o

A,A,
p2q
pq(p+q)
pqr
pqr

or, as Fisher calls it, the quadratic expression, is then obtained by summing all terms typified by
the above, thus giving

3'2 3" 2 2 • • ().. 2" - 1(32P ~l + q ~. + ... + P q~l 21. + ... + pq P + q ),. + ... + pqrJ12 213 + ... - If

counting all the terms in their proper multiplicity.
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'I Moreover, from tho fraternal table we may obtain a quadratic expression having for its typical terms

ip'(l +p)'i; + tp'q'i, i, +p'q(l +p) i, j" +p'qri,j",

tpq(l +p+ q+ 2pq)R, +pqr(l +2p)j" j"+2pqrsj"j",

which, when simplified by removing one quarter of the square of the expression in (XII*), becomes

ip'( 1+ 2p) i; +p'qi, j" + tpq(l +P +q) j;, +pqrj" j",

i(a'+(J')."
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The fraternal table is rather more complicated to construct. We start from Table Q which gives
the possible offspring from all possible types of mating which are 7 in number.

TABLE Q

Mating

A,A, xA,A,
A,A,xA,A,
A,A, xA,A,
A,A, xA,A,
A,A, xA,A,
A,A, x A,A,
A,A, x A,A,

Frequency

p'
4p'q
2p'q'
4p'qr
4p'q'
8p'qr
8pqrs

Offspring

A,A,
tA, A, + tA, A,
A,A,
tA, A,+ tA,A,
iA,A, +tA,A,+iA,A,
iA,A, +iA,A,+iA,A,+iA,A,
tA,A, +iA,A, +iA,A, +iA,A,

From this table we can pick out the possible pairs ofsibs and their relative frequencies, as given
in Table R, one sib corresponding to the columns and one to the rows.

TABLE R
A,A, A,A,

i, i12
A,A, i, ip'(l+p)' p'q(l +p)
A,A, j12 p'q(l +p) }pq(l +p+q+ 2pq)
A,A, i13 p'r(l +p) tpqr(l+2p)
A,A, j23 p'qr tpqr(l+2q)
A,A, ia ip'r' pqr'
A,A, i34 p2rs tpqrs

To illustrate how these frequencies are obtained consider the case where both sibs are AlAI'
This can happen in the first, second, fifth and sixth type of mating and the total frequency is

p' = t p3(q+r+ ... )+ip2(q2+ r2+ ... )+tp(qr+qs +... +rs+ ... )

= p.+tp3(1-p) + i p2(1-p)2 = i p2(1 +p)2.

(This is more easily obtained by the Li and Sacks method mentioned before.) Adding together all
the resulting terms we get
I 2(1 )2'2 I 2(1 )2'2 J 2 2" J 22' . 2 (1 ).. 2 (1 ) .."p +P t l +"q +q t2 + + zp q t l t 2 + 'zp Ttl t 3 + ... +P q +P t 1 J12 +P r +p t 1 J13 + ...

+p2qriri'3+p2qsid2'+ +tpq(1 +p+q+2pq)ji.+ tpr(1 +p+r+2pr)j~3+'"

+pqr(1 +2p)j1.i13+pqs(1 +2p)j12 j14 +... +2pqrsj1.i3< +... ,
thus agreeing with Fisher's sum of typical terms except for his fourth term which should read
p2qri1j.3 and not p'qri1 j13'

The square of the expression in (XII*) is

{ " 3' 2' 2' }2 0P t 1 +q t. +... + pqJ12 + prJ13 +... = ,
and subtracting i of this from the above we get i(a'+ fl') as stated.
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1
-(T'+16').
20"'

" Here~ again, the introduction of multiple allelomorphism does not affect the simplicity of our results; the
correlation between the dominance deviations of siblings is still exactly h and the fraternal correlation is
diminished by dominance to exactly one half the extent suffered by the parental correlation. Tho dominance
ratio plays the same part as it did before, although its interpretation is now more complex. The fraternal
correlation may be written, as in Article 6,

p!" + q!12 +r!13+ = 0,

p!12+q!,,+r!,,+ = 0,

pI,+qJ12 +rJ13 + = L,

pJ12 +qI,+rJ,,+ = M,

and
and so on.

HLet

"15. Homogamy and Multiple Allelomorphi8m. The proportions of these different phases which are in
equilibrium when mating is assortative must now be determined. As in Article 10, let 11,12 , ••• be the mean
deviations of the homozygous phases, and J12,J13 ,.,. those of the heterozygous phases. Let the frequency of
the first homozygous phase be written as P'(l+!l1)' and the others in the same way. Then, since p is the
frequency of the first kind of gamete,

(XIV')

2pq(1+!12) = 2pqe#IV,LM,

!12=p/V.LM.that is,

and so on, then L, M, ... represent the Inean deviations of individuals giving rise to gametes of the different
kinds; hence, by Article 9,

The aim of paragraph 15 is to extend the treatment of assortative mating in paragraphs 9-13
to the case where each locus may have more than two alleles, all loci remaining, as before,
unlinked. Since we are concerned with second-degree statistics (variances and covariances) it is
sufficient to consider the loci in pairs.

In the stable population with assortative mating 11,12, ... and J12, J1S' ... are taken as the mean
values ofthe deviations from the population mean ofthe respective homozygotes A 1 A v A 2 A 2, ...

and the heterozygotes A 1A 2, A1As, ... , with frequencies p2(1 +lu), q2(1 +/22)' ... and pq(1 +/12)'
pr(1 +11S) , etc. Then the equations such as

plu +q/l'+ ... = 0

are necessary in order that the gene frequencies amongst all mating pairs should be exactly
p, q, etc.

Notice in particular that/u,f12' ... are not analogous to thelw ... used in the previous discus­
sion of assortative mating where there are only two alleles at each locus. The f's here refer to a
single locus, and when referring to another locus we shall write 1~1>/~2' ....

The average deviation of the class of individuals which give rise to the gamate A1 will be

(lj2p) {2p2I1+2pqJ12 +...} = L, (XIV*a)

to the first approximation, there being further terms involvingf's which we can ignore. By the
type of argument used before we then have

2pq(1 +/12) = 2pqexp {,ut
M

},

and 112 = ,uLMjV.

The frequencies of A 1A 2and B1B2are 2pq( 1+/12) and 2p'q'(1+1~2)' and their joint frequency
which we now want to find is written as

4pqp'q' (1 + 1~2.12)

or as 4pqp'q'(1 +/12) (1 +1~2) (I +/12.12)'
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Note that the absence or presence of a dash onf;2 means thatf'2 refers to A , A 2, andf;2 to
B, B2 , whilst on the other handf'2.'2 andf~2.12 both refer to both factors together, the difference
being in their definition. Since the 1's are all small we expand the products and neglect small
terms, obtaining

f;2.12 = f12 +f~2 +f,2.12·

In the absence of any assortative mating the gametic frequency of A, B, would have been pp',

but when /h * 0 the proportionate increase, using the definition off;2.12' etc., must be

'f' '1' '1' 'f' '1' 'f'pp 11.11 +pq 11.12 +pr ".13 + ... +qp 12." +qq 12.12 +qr 12.12 + ...
+rp'f;2." +... = F", by definition.

Thus the frequency of A,B, in the gametes is pp'(1 +F,,). The mean value of individuals giving
rise to this gamete is L+L' by the argument leading to (XIV*a) and so on, so that (XIX*)
follows. In this equation the F's are functions of the f~2.12' etc., which are known when the
frequencies p,p', ... are given, and we want to solve for thef12.12' etc.

Fisher guesses that the solutions must be

SInCe

f12.12 = (/hI V) (L +M) (L' +M')

and similar formulae. Putting these in the equation for F" we get

(/hI V) {pp'(2L) (2L') +pq'(2L) (L' +M') + ... +qp'(L + M) (2L')

+qq'(L+M) (L' +M') + ... +rp'(L+N) (2L') + ...}

= (/hIV){L+pL+qM + ...}{L' +pL' +qM' +...}
= (/hI V) LL',

pL+qM+ ... =O, pL'+qM'+ ... =O.

" The association between the phases of two different factors requires for its repre~entationthe introduction
of association coefficients for each possible pair of phases. Let the homozygous phases of one factor be
numbered arbitrarily from I to m, and those of the other factor from I to n, then, as the phase (12) of the first
factor occurs with frequency 2pq(I +1,,), and of the second factor, with frequency 2p'q'(1 +1;,), we shall write
the frequency with which these two phases coincide in Ol1e individual as 4pqp'q'( 1+1;2.12)' or as

4pqp'q'(1 +112) (I +1;,) (1 +112.12)'

so thaL 1;2,12 =112. 12 +!12 +1:2,

H The proportional increase of fi'eqlloncy of the gametic combination (I . 1) is

PpJ;l.l1 +PQ'j:l.12 +pr'j:l.13 -I- ..• +Qp'!;2.11 -I- QQ'j:2 .12 + qr'f;z .13 -I- .•• ,
and 1:)0 on.

H By virtue of the equations connecting thej's of a, single factor, this expression, which we shall term lPni
has the same value, whether written with dashed or undashedj's.

"Individuals having the constitution (12.12) may be formed by the union either ofgametes (1.1) and (2.2),
or of gametes (1.2) and (2. I); hence the equations of equilibrium are of the form

21;, .•, =F'n +F',,+ (p/V) (L+L') (M +M') +1<l,+ 1<11 + (p/V) (L+M') (M +L'),

but

therefore

2112.12 =21:2.12- 2112- 21:2
=21;, .., - (21'/ V) (LM +L'M'),

211'." = 1"n + 1<1, + 1<., + 1"'1 + (1'/ V) (L +M) (L' + M'). (XIX")

suggests itself, and on trial it leads to
and is thereby verified. II

" By analogy with Article 12, the solution

1".1, = (p/V)(L+M) (L'+M')

1"n = (p/V)LL',
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p'(1 +f11)

To obtain L we argue as follows. Write the mean deviation of the homozygote A1 A 1 from the
population mean as 11 = i 1 +it where i 1 is the deviation due directly to the genotype A 1A1if the
other genes were segregating independently of the A locus. it is then the extra deviation produced
by the other genes in virtue of the association due to homogamy. The homozygote A1 A1 has
frequency

and the double homozygote A 1A 1B1B1has frequency

p'p"(1 +f11) (1 +f;l) (1 +f11,l1)'

p"(1 +f;l) (1 +f11,l1)'

From this it follows that the conditional probability that an individual is B1 B1, if it is known
that it is A1 A1, is

which to a reasonable approximation can be written as

2p'q'(1 +f;.+ f11,l.)·

The total additional contribution of the individuals at the B locus to the measurement of A 1 A 1

individuals is therefore

p"(1 +f;l +f11.11)·

Similarly, the probability that an individual is B1 B. when it is known that it is A 1 AI> is
approximately

p"(1 +fh+f11.11)i; +q"(1 +f;.+ f11 .••)i;+ ... +2p'q'(1 +f;.+fll.1.)j;. +....
We have already defined the effects i;,j;" in such a way that the mean effect is zero, i.e. so that

p"(1 +f;l)i; +... +2p'q'(1 +f;.)j;.+ ... = o.
Thus the additional increment is simply

"'f" 2 "'1 .,p 11.11 ~1 +... + P q 11.1.312 +....
We now consider the sum over all loci other than the A locus and we denote this summation

by the symbol~.We get

I . .* "'{p"'f" 2 ' ''1 ., }1 = ~1 + ~1 +"" 11.11 ~1+ ... + P q 11.1.31. + ...
and similarly

the factor 2 occurring to include two terms of equal value.
Write

Then
L = pI1 +qJ;..+ ...

= l+~{p"i;(f11.11P +f1•.11 q+ ... )+... + 2p'q'j;.(fll.12P +f1•.1.q+ ... ) + ...}.

Using the values ofthej's which we have found above, and

we get

and similarly

pL+qM+ ... =O,

f11.11P +f1•.11 q+ = (p,!V)L(2L'),

fll.1.p +f1•.1. q+ = (p,! V) L(L' +M')

(these results being misprinted in the text). Using these we get finally

L = 1+ (p,LfV) ~{(2L')p"i; +... +2(L' +M')p'q'j;. +...}.
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I' = p'ii +q'ji2 + ...

L = 1+ (flLIV)r.{2p'I'L' + 2q'm'M' + ...}.
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Since each individual locus is regarded as contributing a vanishingly small component of the
total variance we can now suppose the summation to be taken over all factors at all loci and not
merely all those other than the locus being considered. We can then put L = I+AL, where

A = (.uIV) r.{2p'l'L' +2q'm'M' + ...}.

Since A is independent of the locus being considered, we also have

L' = I' +AL',

so that

and then

1'= (I-A)L',

A(I-A) = (.uIV)r.(I-A) (2p'I'L'+ )

= (.ul V) r.(2p'l'2 +2q'm'2 + )
= (.uI V )7 2. (XXII*)

In a similar way substituting for the f's in the formulae for 11 and J12 , and then putting
L = 1(1- A)-I, etc. we get

I - . 2.u {4 '211'" 2 ' '1(/' ') . }1- t 1+V(I_A)2 P t 1+ .. ·+ pq +m 212+'"

. 2AI
=t1 +1_ A ,

and J12 = j12+ V(12~A)2 {2p'2(/+m) I'ii +... +4p'q'(l +m) (I' +m')j12+ ...}

=j12+ 1~A (/+m).

H Hence we may evaluate L, L', ... ,for

L = pI, + qJ" + rI" + ... +1= ~(p''i'(P!ll.ll+ q!12. 11 + ... )+ 2p'qj·;,(P!1l." + q!12." + ... )+ ... ,
but P!ll.ll +q!12.11 + ... = (p,/V)L(L' +M'),

therefore L =1+ (p,/V) L~{p"i'(L' + L')+ 2p'q'j;.(L' + M') + ...J,
= 1+ (p,/V) L~(2p'l'L' +2q'm'M'... ).

"Let L::::: l+AL,

then

and

therefore

therefore

L =l/(l-A),

A = (p,/V) ~(2p'I'L' +2q'm'M'+ ),
A(l-A) = (",/V)~(2p'I"+2q'm"+ )

=(",/V) ~fJ",

A(l-A) = (p,/V)r' (XXII')

so that the association constant, A, appearing now in the constant ratio l: L, plays exactly the same part in
the generalised analysis as it did in the simpler case.

" It may now be easily shown that the mean deviations, I and J, may be calculated from the equations

and
I, = i,+2Al/(I-A), }

J 12 =j12HA/(I-A)] (l+m),
(XXIV')

and that the variance reduces, as before, to
<T' HA/(l-A)] T'. (XXV')
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"16. Gowpliny. In much mcdern Mendelian work coupling plays an important part, although the results of
different investigators do not seem as yet to converge upon anyone uniform scheme of coupling. The type
found by Morgan in the American Fruit Fly (Drosophila) is, however, ofpeculiar simplicity, and may be found
to be the general type ofthe phenomenon.

" An individual heterozygous in two factors may owe its origin to the union ofeither of two pairs ofgametes
either (I .1) x (2.2) or (1.2) x (2. I); when coupling occurs, the gametes given off by such an individual, of all
these four types, do not appear in equal numbers, preference being given to the two types from which the
individual took its origin. Thus in a typical case these two types might each occur in 28 per cent of the gametes
and the other two types in 22 per cent. Coupling of this type is reversible, and occurs with equal intensity
whichever oftha two pairs are supplied by the grandparents. We may have any intensity from zero, when each
type of gamete contributes 25 per cent to complete coupling, when only the two original types of gamete are
formed, and the segregation takes place as if only one factor wefe in action.

The above analysis of polymorphic factors enables us to compare these two extreme cases; for there are
9 phase combinations of a pair of dimorphic factors, or, if we separate the two kinds of double heterozygote,
10, which, apart from inheritance, can be interpreted as the 4 homozygous and the 6 heterozygous phases of
a tetramorphic factor. The 4 gametic types of this factor are the 4 gametic combinations (1.1), (1. 2), (2.1),
(2.2)."

This mapping of a system with two factors at each of two loci on to a system with four factors
at a single locus is particularly interesting and can be illustrated as follows.

Suppose that at the first locus the two factors denoted by 1 and 2 in the text are Al and A.,
and similarly B I , B. at the second locus. The nine phase combinations are then

AIAIBIBI

AIAIB,B.

A,AIB.B.

AIA.B,B,

A,A.B,B.

A,A.B.B.

A.A.B,BI

A.A.B,B.

A.A.B.B•.

When linkage ('coupling' is Fisher's term) is considered the double heterozygote AIA.B,B.
really corresponds to two different heterozygotes according as whether A, andB, are on the same
chromosome or on different chromosomes. We shall denote these two types by (AI B,) (A. B.) and
(A, B.) (A. B,).

Now consider a single locus with four factors C" C., Ca and C•. This results in four homozygotes
and six heterozygotes. Ifwe identify the four factors C" C., Ca and a. with the pairs of factors
A, B" Al B., A. B I and A. B. respectively we have the following mapping ofthe two loci situation
on the single locus situation.

AIA,B,BI CICI (AI B.) (A. B1) C.Ca
AIAIBIB. GIG. A,A.B.B. G.G.

AIA,B.B. C.C. A.A.BIBI CaGa

AIA.B,BI G,Ca A.A.B,B. GaG.

(A, BI) (A. B.) qC. A.A.B.B. C.G.

Thus to deal with linkage Fisher considers the two possible extreme cases of no linkage and
complete linkage when there is assortative mating but, as above, no epistatic effects.

Case I. Here we have two unlinked loci with AI' A. at one, and B" B. at the other. These have,
as usual, gene frequencies p, q, p', q', respectively, and as before the coefficient of assortative
mating is ft. The mean deviations associated with A, AI' Al A., A.A. are again i,j, le, and i',j', le'
for the other locus.

Let L be the mean deviation produced in the population by a gamete carrying A" and define
M, L', M', similarly. Thus the mean deviations associated with gametes AIBI, AlB., A.B" and
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A,B, are L+L', L+M' (not M +M' as in Fisher), M +L', and M +M'. By the theory given
above the frequencies of these four gametes are

pp'{l + (p,jV) LL'},

qp'{l+ (p,jV) ML'},

pq'{l + (tt/ V) LM'},

qq'{l + (tt/V) MM'}.

These are denoted by Fisher as p, q, r, s.
The frequency of a double homozygote like A 1 A 1 B1 B1 is, by the previous argument,

p'p"(1 +111.11) = p'p"(1 +111 +Ii1 +111.11)
approximately, where

111= ttL'/V, ii1 = ttL"/V, f11.11 = 4ttLL'IV.

Thus to this order of approximation the frequency of A1 A1 B1 B1 is

p'p"{l + (tt/V) (L'+ L"+ 4LL')} = {pp'(l + (tt/ V) LL')}'{l + (tt/V) (L +L')'}.

Case II. If there is complete linkage the four pairs A1 B1• AlB., A.B1, A.B. each behave like
a single gene. We suppose they each have the frequencies given above as p, q, r, s. We also
suppose that the deviations produced by these'genes' are the same as occurred in the previous
case so that, for example, a zygote A1 A1 B1 B. would have the deviation i +j', the genes at any
other loci being held fixed.

We must first investigate whether the genotypic fi'equencies in the second case will be the same
as in the first. If there is no assortative mating (tt = 0) this is obviously true since the frequency
of A1 A1 B1 B1 in the unlinked system will be (pp')' which is the square of the frequency, pp', of
the' gene' A 1 B 1 in the linked system.

We have also seen that assortative mating changes the frequency of gene combinations at any
pair ofloci only by a quantity of the first order of smallness. Thus to this degree of approximation
the'genotypic' frequencies should remain the same.

The mean deviation in individuals carrying the gamete A1 B1 will then be the same in both
systems. This is L +L' which Fisher writes as a capital L. The similar result holds for the other
gametes.

The variance, V, in the population in the two cases should also be the same.
Then treating A 1Bv etc., as single genes the frequency of a genotype such as (A1 B1) (A1 B1)

will be, to the first order of approximation,

p'{l + (tt/V) L}' = {pp'(l + (tt/ V) LL')}'{l + (tt/ V) (L+L')2},

which agrees exactly with the result obtained in Case I above. Thus to this degree of approxima­
tion, which is as far as Fisher goes in his theory, the two systems of completely unlinked and
completely linked genes agree as regards the frequencies of occurrence, the magnitudes of the
effects produced by genes and gene-combinations, and the effect of assortative mating.

Fisher does not explicitly prove that the correlation between relatives will be the same in the
two cases. To show this it is necessary to show that the values of T' = 'f,fJ' are equal since the
correlations will be later expressed in terms ofT', V, tt, and A (A being given by equation (XXII))·

To prove this we return to the original definition offJ'. To simplify the notation denote the mean
deviations i,j, k produced by A 1 A1, A1 A., A.A. by jWj1. = j.1,j.. (notice the change in notation
from Fisher's use of these symbols). We shall also write the gene frequencies p, q of A1, A. as
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PI' P2' As before we proceed by fitting' representative values' for which we shall abandon Fisher's
notation c+b, c, c-b, and write instead

Representative value for ArAs = xr+x.,

where r, 8 = 1, 2. These values are to be found by least squares. Neglecting the small changes in
frequency due to assortative mating we have to minimize the sum

81 = '2:.PrP8(jrs- xr- xs)2,

which is equal to p2(i - c- b)2 + 2pq(j - C)2+ q2(k -c+b)2

where

in Fisher's notation. The conditions for a minimum are that

(l2 is then defined as the variance of the representative values so that

(l2 = p2i 2+2pqj2 +q2k2- (p2i +2pqj+q2k)2

= '2:.PrPs(xr+xs)2_{'2:.PrPs(xr+xs)}2

= 2('2:.Prx~-M2),

M = '2:.Prxr'

The same argument applies if we have multiple allelomorphs A r (r=1, ... ,k), and a similar
definition applies to the alleles at the second locus for which the representative values, x; +x;, are
the solutions of

Now consider the system with complete linkage so that the' alleles' are (ArBs)' Since there is no
epistacy, the mean deviation produced by ArAs BtB" is jrs+jt,,; all other genes being fixed. Ifwe
neglect the small deviations in frequency produced by assortative mating we can find a 'repre­
sentative value', xrs' for the 'gene' (ArB.) by minimizing the sum

'<' "( •• )2"PrPsPtP" Jr.+Jt"-Xrt-X",, .

The conditions for this are, by differentiating,

2L;Psp,,(jrs+jt,,-xrt -x.u ) = O.
rt

The solution of these equations is simply Xrt = xr+Xt as can be verified by substituting these
values and using the previous equations for x" Xt.

The new value of (l2 for the system with complete linkage is

;3"2 = 2'2:.Prpt(xr+Xt)2- 2{'2:.Prpt(Xr+X;)}2

= 2{'2:.pt '2:.Pr x~ +2'2:.Pr xr'2:.pt Xt + :r.Pr :r.pt x[2 - (:r.Pe :r.Pr Xr+ :r.Pr :r.pt xe)2}

= 2{:r.Prx~+2MM' +'2:.pt x[2- (M +M')2}

= 2{'2:.Prx~ - M2 +:r.pt x[2 - M'2}

= (l2+ (l'2.

Thus in the sum 7 2 = :r.(l2 the two terms (l2 and (l'2 which occur in the system with unlinked
genes are replaced by a single term (l"2 in the system with complete linkage, but by the above
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and

equation the value of 7' is unchanged. Thus, as will be shown later, the correlations between
relatives are unaffected.

Fisher does not consider what happens with values of the recombination fraction lying between
oand i, and he seems to imply that because there is no important difference between the extreme
cases ofno linkage and complete linkage itis highly probable that the same results will be obtained
for such intermediate values.

However, there are serious gaps in the argument to be filled before this is demonstrated. It
might be thought that a population in which the recombination value was inside the interval
(0, i) could be regarded as a mixture of two populations in one of which linkage is absent and in
the other in which it is complete. Simple calculations show that this is not correct.

When linkage is complete the gene combinations, (ArBs), can be regarded as single genes and
there are no restrictions on the frequencies which can be assigned to them. In particular we can
suppose, as above, that (ArB,) has frequency Prp;(l +Ers)' But if linkage is not complete the
frequencies of gene combinations are determined by the properties of the system and can no
longer be chosen at will. It is therefore of interest to show that the frequency of ArBs can still be
taken as PrP; in a stable population.

When the mating is not assortative, and Ers = 0, this is well known. It can be proved for
assortative mating in the following way. Suppose first that the two loci are unlinked. Then
a double heterozygote, A, A.B, B., can arise in two ways. Either A l Bl comes from one parent
and A.B. from the other (call this 'coupling'), or AlB. comes from one, andA.Bl from the other
('repulsion'). The frequencies of A,Bl and A.B. are

pp'(1 +Fl1 ) = pp'{l+(,uLL'/V)},

qq'{1 +(,uMM' IV)}.

The average deviation of individuals giving rise to A,Bl is L+L', and that of individuals giving
rise A.B. is M +M'. If there was no assortative mating the probability ofsuch a pair ofgametes
would be the product of their frequencies. However, with assortative mating this product has

to be multiplied by exp [(,u/V)(L+L') (M +M')],

which can be approximated by
I + (,u/V) (L +L') (M +M').

Thus with assortative mating the total probability of such a pair of gametes is

pp'qq'{1 + (,u/V) [LL' +MM' + (L+L') (M +M')]}

= pp'qq'{l+(,u/V) (LM +L'M' +(L+M) (L' +M'))}.

By symmetry we get the same probability of a union between A, B. and A. B, so that coupling
and repulsion are equally frequent.

Suppose that we have a stable population in which there is no linkage, and instantaneously
linkage is introduced with recombination fraction ewhere 0 < e < t. In the immediately following
generation the only effect which could occur would be a change in the proportion of offspring of
double heterozygotes. From a double heterozygote in coupling we get gametes in the proportion

t(1-e)AlBl + teA,B.+ teA.Bl +i(I-e)A.B.,

and from one in repulsion we get:

teA,B, + t(l-e) A,B.+ HI-c) A.B,+teA.B•.
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Since coupling and repulsion heterozygotes have the same phenotype, they have the same
probability ofmating with any particular genotype, and since coupling and repulsion are equally
frequent, the gametes produced by all heterozygotes will have frequencies which are the averages

of the above frequencies, i.e. lA B +1A B + lA B + lA B
~ 1 1 4: 1 2 4: 2 1 I{ 2 2'

which is just what happens if c = }, i.e. when there is no linkage.
Since the introduction of linkage has not changed the frequencies in the next generation the

population remains stable in all further generations.
The same argument can be used to show that the parent-offspring correlationis independent of

the recombination fraction. It does not show at once that the same is true for sib-sib and more
distant relationships but this is plausible. Fisher does not discuss these more complicated cases
in his paper and we do not pursue the matter further.

\

"The mean deviationA associated with 1ihese 4 gametic types are L+L', M +M', ... , and we therefore write

L = L+L', M =L+M', N = M+L', 0 = M+M'.

"Further, if these gamet.ic types occur wit,h frequency,

p =p1"{l +{f.tlV) LL'} q =pq'{l +(I'I V) LM'}

r =qp'{l + (I'/V) ML'} s = qq'{l + (I'/V) MM'} ,

it is clear that the frequencies with which the homozygous phases occur, such ft,<:{

1'''p''(1 +1:1.11) =1'''p''{1 + (I'/V) (L'+ L"+ 4LL')},

p'{I+(I'/V) (L+L')'} = p'(l+(I'IV)L'),

are exactly those produced, if there really were a single tetramorphic factor.
"In the same way the phases heterozygous in one factor also agree, for

2p'p'q'(1 +1:,.12) = 2p'p'q'{1 + (I'I V) L' +L'M' + 2L(L' +M'»))

= 2pq{l+(I'/V)(L+L')(L+M')) = 2pq{l+(I'/V)LM}.

"Finally, taking half the double heterozygotes,

2pqp'q'(1 +1:,.12) = 2pqp'q'{1 + (I'/V) [LM +UM'+(L+M) (.U +M')]}

2ps{l+ (I'/V)(L +L')(M+M')) = 2ps{l+(I'IV) LO},

or, equally, 2qr{1 + (I'I V) (L+M') (M +L')) =2qr{1+ (I'/V) MN}.

"From this is appears that a pair of factors is analytically replaceable by a single factor if the phase
frequencies be chosen rightly: but the only difference in the inheritance in these two systems is that in the one
case there is no coupling, and in the other coupling is complete. It would appear, therefore, that coupling iR
without influence upon the statistical properties of the population."

Fisher now considers the correlations between individuals in a population in which there is
assortative mating and environmental effects. To do this he uses regression theory. Suppose all
measurements are taken from the mean of the population. Let x be the measurement in one
individual and X in another. The correlation between x and X is then

p = cov (x,x) {var (x) var (x)}-r

= cov (x, Xl/V.
We suppose so many factors are acting that the joint distribution of x and X is bivariate normal
so that the regression lines are straight. Then the expected value of X for any given x is

E(X Igiven x) = fJx = px and p = x-1 E(X Igiven x).
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Fisher tacitly supposes that the effects ofenvironment can be represented by an addition to the
measurement which is independent of the genetic value so that there is no 'interaction' between
genotype and environment. This' environmental deviation' is supposed to be normally distri­
buted with zero mean and constant variance, and is not correlated among relatives. Then,
measuring from the mean, we can write

x = observed value

= y (genetic value) +environmental effect

= z (representative value) +dominance deviation +environmental effect.

These three terms, the first two of which are sums over the various loci, are mutually uncorre·
lated. Thus with a large number of loci, the joint distribution of (x, y, z) is trivariate normal, with
z (representative value), y-z (dominance deviation), and x-y (environmental effect) all
statistically independent. H therefore follows that

cov (x, y) = var (y) = V,

cov(x,z) = cov(y,z) = var(z),

var (x) = var (y) +var (1/),

where 1/ is the environmental effect.
Thus for the regression coefficients we find

bx.y = bx.• = by .• = l.

Then an increase 8z in the representative value will on the average increase both the genetic
component y, and the observed measurement z, by 8z. This is also evident from the above
decomposition.

Thus we have
b - C (sa ) _ cOV (x, 1/) _ var (1fl
y.x- l' Y - var(x) -var(x)'

d . XXVIb b () var (z) 7
2

an , usmg ( ), '.y = Co say = var(y) = cr2-Aeo'

Now let x, y, z be the values for a father, and X, Y, Z, the corresponding values for his son.
The regressions of the values X, Y, Z, on x, y, z will arise in two ways. In the first place, the
partial regression of Z on z, keeping the mother fixed, will be t (from the table in section 5).

The dominance deviations (y - z), (Y - Z), and the environmental effects (x - y), (X - Y), are
uncorrelated with each other and with z, Z. Thus it is easy to find the regressions ofany ofX, Y, Z,
on any of x, y, z.

However, there is a second indirect component of regression arising from the fact that the son's
Z is correlated with the mother's representative value, which is in turn correlated with the father's
because of assortative mating. Fisher now finds this extra component of regression under three
different hypotheses about the nature of assortative mating, namely that the underlying
association is between (1) the observed characters x; (2) the genetic components y; (3) the repre­
sentative values z.

Notice that he now uses p, for the observed correlation between the x values, whereas in the
previous discussion it was the correlation between the y's.
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" 17. The effects both of dominance and of environment may be taken into account in calculating the
coefficient of correlation: if we call x the actual height of the individuaJ, y what his height would have been
under some standard envirorunent, and z what his height would have been if in addition, without altering the
extent to which different factors are associated, each phase is given its representative value of Article 5. Then,
since we are using the term environment formally for arbitrary external causes independent of heredity, the
mean x of a group so chosen that y = t for each member will be simply t, but the mean y of a group so chosen
that x = t for each member will be C1 t, where 01 is a constant equal to the ratio oftha variance with environment
absolutely uniform to that when difference of environment also makes its contribution. Similarly for the
group z = t, the mean value of y is t, but for the group y = t the mean z is 02 t, where

(XXVII)

II Now, we may find the parental and grandparental correlations from the fact that the mean z of any
sibship is the mean z of its parents: but we shall obtain very different results in these as in other cases,
according to the interPretation which we put upon the observed correlation between parents. For, in the
first place, this correlation may be simply the result of conscious selection. If the correlation for height stood
aJone this would be the most natural interpretation. But it is found that there is an independent association
of the length of the forearm:* if it is due to selection it must be quite Wlconscious, and, as Professor Pearson
points out, the facts may be explained if to some extent fertility is dependent upon genetic similarit:r. Thus
there are two possible interpretations of marital correlations. One regards the association of the apparent
characteristics as primary: there must, then, be a less intense association of the genotype y, and still less of z.
The other regards the association as primarily in y or z, and as appearing somewhat masked by environmental
effects in the observed correlation. In the first place, let us suppose the observed correlation in xto be primary."

In the discussion below, assuming this first interpretation of marital correlation, if one parent
has the value x = t, the children will have the value

and not

as misprinted in the paper. The remainder of the formulae follow.

"Then if # is the correlation for x, c,# will be that for y, and this must be written for # in the applicatIons
of the preceding paragraphs. Hence

and p, CIP and A are the marital correlations for x, y, and z.
H Since the mean z of a sibship is equal to the mean z of its parents, we may calculate the parental and

grandparental correlations thus: for group chosen so that x = t: mean y, fj = l1. t; mean z,z = Cl c2 t; x afmate
is pt; z of mate is cl czpt. Therefore z of children is

1+#
Cl c2 - 2-·

H Hence, since there is no association except of z between parents and child, the parental correlation
coefficient is

Now, since we know the mean z of the children to be

the mean z of their mates is

* Pearson and Lee, ' On the Laws of Inheritance in Man.' Biometrika, 2, 374.



P. A. P. MORAN AND O. A. B. SMITH 51

and the grandparental correlation coefficient will be

1+1' I+A
°1 °2 -2- --2- .

Similarly, that for the (n+ I)th parent will be

1+1' (I+A)n°1°2-2- --2- ,

giving the Law of Ancestral Heredity as a necessary consequence of the factorial mode of inheritance.
"18. Ifwe suppose, on the other hand, that the association is essentially in y, the coefficient of correlation

between y of husband and y of wife must be pic. in order to yield an apparent correlation p. Also

T'

and

# is the observed correlation of x's. If the structural correlation occurs in the y's, it must there­
fore have value #0:;1 so that

and the argument proceeds as before.

" The parental correlation found as before is now

C1 c2 +Acl'--2--- ,

and the higher ancestors are given by the general form

c. c,+Ac. (I +A)n
2 2'

although A is now differently related to c., c, and p.
" In the third case, where the essential connection is between z of hus,!?and and z of wife-and this is a

possible case if the association is wholly due to selective fertility or to the selection of other features affected
by the same factors-the equation between the correlations for y and z is changed, for now the marital
correlation for y is equ~l to AC2 when we retain the definition

T'

UHence also

and the correlation coefficients in the ancestra.lline take the general form

0·1977
0·4180
0·6980
0·1377
0·5689

ForearmSpan

0·1989
0·4541
0·7575
0·1507
0·5753

0·2804
0·5066
0·7913
0·2219
0·6109

(
I+A)n+l

C1 C2 -2- .

"19. On the first of these theories a knowledge of the marital and the parental correlations should be
sufficient to determine °1°2, and thence to deduce the constant ratio of the ancestral coefficients.

Thus for three human measurements:

Stature

These figures are deduced from those given by Pearson and Lee (lac. cit.), neglecting sex distinctions, which
are there found to be insignificant, and taking the weighted means."

4 M&S
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In the table above, It is the observed correlation between mates as taken from Pearson and Lee,
and p is the observed parental-offspring correlation. We then find c1 c.' A, and !( I +A) from the
formulae

"These values for !(I+A) agree very satisfactorily with the two ratios ofthe ancestral correlations which
have been obtained, 0·6167 for eye colour in man, and 0·6602 for coat colour in horses. It is evident that ifwe
also knew the ratio of the ancestral correlations for these features, we could make a direct determination of
A and ascertain to what extent it is the cause and to what extent an effect of the observed marital correlation.

"20. The correlations for sibs, double cousins, and more distant relations of the same type, in which all the
ancestors ofa certain degree are common, may be found by considering the variance oftha group ofcollaterals
descended from such ancestors. The variance ofa sibship, for example, depends, apart from environment, only
upon the nurnb'er of factors in which the parents are heterozygous, and since the proportion of heterozygotes
is only diminished by a quantity of the second order, the mean variance of the sibships must be taken for our
purposes to have the value appropriate to random mating,

!T' + ie' = ! V[2c,(I-A) + 3(1- c,)]

plus the quantity (Vic,) - V due to environment. But the variance of the population is Vic,; and the ratio of
the two variances must be 1-!, wheref is the fraternal correlation. Hence

f= !c,(I+c,+2c,A)."

Still assuming the first model of correlation basically between the x's, we have to find the
'variance of a sibship'. We imagine the number of individuals in a sibship indefinitely increased,
and then the x's of the resulting individuals will have a distribution with mean ms' say, and
variance vS' Both ofthese will depend on the genetic character ofthe parents. The observed value,
x, of a random sib from a random sibship may be decomposed into two parts as

x = ms+(x-ms),

where x and m s are both random variables. Since in anyone sibship we have

E(x-ms) = 0,

by definition, we also must have E{ms(x-ms )} = 0

within each sibship, and therefore in the whole population. Thus ms and (x - msl are uncorre­
lated. From this it follows that

var (x) = var (ms)+var (x - ms),

= v~, say.

Here var (x - ms)means the mean value of (x - ms)' taken over all sibs in all sibships. It is therefore
the mean value of Vs taken over all sibships and can be written as vS' Then

var (ms ) = v~-vs'

If x, X, are the measurements of a random pair of sibs from a random sibship,

cov(x,X) = cov (ms+{x-m.},ms+{X-ms})

= var (ms)

Thus the sib-sib correlation is

f= cov(x,X) = v~-vs _I_V.
-v'{var (x) var (X)} -v'{v~v~} - v~ .
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This can be written
Vs = (I-f)vx'

The variance, v", within any sibship depends only on segregation within that sibship and
therefore only on those genes for which the parents are heterozygous, since if the parents are
homozygous the effect is to make a constant addition to all sibs alike. But the frequencies of
heterozygotes at any locus are affected by assortative mating only by a small quantity so that
the variance within sibships will be changed by a proportionally small quantity. Thus Vs can be
taken, nearly enough, to have its value for random mating, although var (ms ) will have to be
changed.

If there are no environmental effects, and no assortative mating, the correlation between the

sibs is T 2 + te2
2(1"2 •

Thus the covariance between sibs is tT2 + le2,

which will be unaffected by any environmental effects which are such that they are uncorrelated
in the sibs. We also have A

V = var(y) = (1"2+ __T2
I-A

A
= T2+e2+--T2

I-A'

7 2 7 2

C2 = (1"2-Ae2 = r' +-tT"::' Afe2'

Solving these equations for T 2 and e2 we get

T2 = Vc2(I-A), e2 = V(l-c2)
From these we have

cov(x,X) = tT2+1e2

= lV{2c2(I-A)+3(I-c2)}·

We also have c2 = var (y)/var (x) = Vv;l,

and substituting in the formula for I we get Fisher's result.
For double cousins we argue as follows. At anyone locus each member of a double cousinship

may be regarded as having one gene chosen at random from the four carried by his father's
parents, and one chosen at random from the four carried by his mother's parents. The variances
of the cousins within the cousinship will depend only on the dissimilarities within each of these
two sets of four genes, and therefore by the same argument as before, will be almost independent
of assortative mating.

Let x and X be the observed values of the two double cousins, and I the correlation between
them. The variance of the population, and therefore of x or X is Vc11, and the variance due to
environmental effects is Vc11 - v,:. Then the variance of x - X must be

E(X-X)2 = 2Vc11(1-f)

on the one hand, and E(x- X)2 = 2V(c1 1 - 1) +2((1"2- !T2 - 1'.e2)

on the other, because the correlation between the genetic components for double cousins is
known to be 1

4(1"2 (T
2+ le2

).

Thus the second term above is the genetic component of variance.
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Putting 0"2 = T 2+62, and substituting for T 2and 62, we get

so that

and

Vc11(I-f) = V(c11-1)+ V{!c2(l-A)+tW- C2)},

I-f= l-c1+!c1c2(I-A)+Uc1(I-c2)'

f = c1h1
• +r\-c2 +!Ac2}·

" In the same way, the variance for a group of double cousins is unaffected by selective mating, and we find
the correlation coefficient for double cousins to be

-,'.0,(1 +3o, + 120,A),

showing how the effect of selective mating increases for the more distant kin.
H On the first hypothesis, then, we must write,

and 1= !o,{I+o,(l+2A)}.

" 21. We shall use this formula for the fraternal correlation to estimate the relative importance ofdominance
and environment in the data derived from the figures given by Pearson and Lee.

" Assuming as the observed correlations

p
p

1
we obtain as before

Stature Span

0·2804 0·1989
0·5066 0·4541
0·5433 0·5351

0·7913 0·7575
0·2219 0·1507

Cubit

0·1977
0·4180
0·4619

0'6980
0·1377

c, = 41-0,0,(1 +2A),and calculating 0, from the formula

we obtain the three values 1·031 1·155 0·957

with a standard elTor of 0'072, and a mean of 1·04~."

Presumably by 'standard error' Fisher means' standard deviation of the observed values'.
However, this is not clear; the standard deviation based on two degrees of freedom would be
0'100, not 0·072 and the standard errors in the next table also do not agree. It is not clear what
precisely is in Fisher's mind here. He does all his calculations to three or four decimal places.
But he does not give any indication of the accuracy of the correlations on which his calculations
are based, other than the 'standard errors' quoted from time to time. These do not seem to be
standard errors in the sense of the term most used nowadays, namely, the standard deviation
of the estimate to be expected in repeated sampling. The text suggests that the three values of c1

for respectively stature, span and cubit were looked upon as if they were three estimates of
some' ideal' or 'true' value of c1, differing from this only by random fluctuations.

"This relatively large standard error, due principally to our comparative ignorance of the fraternal corre­
lations (errors in p, have scarcely any effect, and those in p are relatively unimportant)~ prevents us from
making on a basis of these results a close estimate of the contributions to the total variance of the factors
under consideration.
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"Remembering that Cl is intrinsically less than unity, the second value is inexpli9ab1y high, whilst the first
and third are consistent with any value sufficiently near to unity. The mean of these results is materially
greater than unity, and therefore gives no support to the supposition that there is any cause of variance in
these growth features other than genetic differences. If this is so, we should put cl = 1, and compare the
observed va.!lles ofj with those calculated from the formula

4j = 1+ c2(1 +2A).
H With their standard errors we obtain

Observed
Calculated
Difference

Stature

0·5433
0·5356

-0,0077

Span

0·5351
0·4964

-0,0387

Cubit

0·4619
0·4726

+0·0107

Standard
error

0·016
0·008
0·018

1\ rl'he exceptional difference in the fraternal correlations for span might, perhaps, be due to the effects of
epistacy, or it may be that the terms which we have neglected, which depend upon the finiteness ofthe number
of factors, have some influence. It is more likely, as we shall see, that the assumption ofdirect sexual selection
is not justified for this feature. Accepting the above results for stature, we may ascribe the following percentages
of the total variance to their respective causes:

Ancestry
Variance of sibship:

17'
t(i'
Other causes

% %
54

31
15

46
-
100

Again it may be divided:

Genotypes (<T'):
Essential genotypes (72)

Dominance deviations (62)

Association of factors by homogalny
Other causes

62
21

83
17

100

" These deterlninations are subject, as we have seen, to considerable errors of random sampling, but our
fignres are sufficient to show that, on this hypothesis, it is very unlikely that so much as 5 per cent of the total
variance is due to causes not heritable, especially as every irregularity of inheritance would, in the above
analysis, appear as such a cause.

" It is important to see that the large effect ascribed to dominanee can really be produced by ordinary
Mendelianfactors. The dominance ratio e2 /u2 , which maybe determined from the correlations, has its numerator
and denominator composed of elements, 82 and a 2, belonging to the individual factors. We may thereby
ascertain certain limitations to which our factors must be subject if they are successfully to interpret the
existing results. The values of the dominance ratio in these three cases are found to be:

Dorninance ratio

Stature

0·253

Span

0·274

Cubit

0·336

Standard
error

0·045

Cl C ~+ I' (!--t- A)"
2 2 2 '

tc l [l + c,( I + 2A)],

;1,Cl[l +3c,( 1+4A)],

"22. The correlations for uncles and cousins, still assmning that the association of factors is due to a direct
selection of the feature x, may be obtained by the methods of Article 14, using the two series already obtained:
that for ancestors

and that for collaterals, like sibs and double cousins, which have aU their ancestors of a certain degree in
common,

and so on.
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" Thus if a group be chosen so that x = t,

'if of group is c, t,

zof group is °1°2 t,

f "b" l+A
Z 0 81 SIS CI0a-2-t,

also

Hence

'if of sibs is tc,[1 + c,(1 + 2A)] t,

'if of sibs mates is tc,[1 + c,(1 + 2A)] c,l't,

Z of sibs mates is tc,[1 +c,(1 + 2A)]At.

zof nephews is 1":1[2c,(1 +A) + {I + c,(1 + 2A)}A]t,

giving the correlation

and

hence

giving the correlation

" Again for oousins, if a group be chosen so that x = t, we have

'if of uncles is [c, c, c~Ar +lc,A(I-0,)J t.

Z of uncles is 0,0,C~Ar.

Z of uncles mates is [0, 0,C~A)'+lo,A(I- O,)J At.

Z of cousins is ["''''' C~A)'+n",A'(I-",,)J t,

o,c,C~Ar+-hc,A'(I-o,).

" The formulae show that. these two correlations should differ little from those for grandparent and great­
grandparent, using the values already found. and putting 0, = 1 we have

Stature Span Cubit

Grandparent 0·3095 0·2612 0·2378
Great-grandparent 0·1891 0·1503 0·1353
Uncle 0·3011 0·2553 0·2311
Cousin 0·1809 0·1445 0·1288

"23. On the third supposition, that the marital correlation is due primarily to an association in the essential
genotype z, we obtain results in some respects more intelligible and in accordance with our existing Imowledge.

" From the fundamental equations p, =o,o,A. P =1(0,0,+1'),

we may deduce 0,0, = 2p-P,. A =1'/(2p-I').

whence the following table is calculated:
Standard

Stature Span Cubit error

P, 0·2804 0·1989 0·1977 0·0304
P 0·5066 0·4541 0·4180 0·0115
f 0·5433 0·5351 0·4619 0·0160
OlGa 0·7328 0·7093 0·6383 0·038
A 0·3826 0·2804 0·3097 0·028
W+A) 0·6913 0·6402 0·6549 0·014

and making use of the fraternal correlations to separate C1 and Ca, by the equations

or

f =to,[1 +0,(1 + 2A)].

0, = 4f- 2p -I'.
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0·8796
0·8331
0·2450

1·0333
0·6864.
0·3883

0·8139
0·7842
0·2850

0·078
0·077
0·105

"The standard error for the dominance ratio is now very high, since the latter is proportional to the
difference f - p. If we assume a known value for e1, and calculate the dominance ratio from p and # only,
the standard error falls nearly to its value in Article 18.

"The three values for the ratio of the ancestraJ correlations 0,691, 0,640, 0·655 are now higher than that
obtained from observations of eye colour, and are more similar to the value 0·660 obtained for the coat colour
of horses. Without knowing the marital correlations in these cases, it is not possible to press the comparison
further. It would seem unlikely that the conscious choice of a mate is less influenced by eye colour than by
growth features, even by stature. But it is not at all unlikely that eye colour is but slightly correlated with
other features, while the growth features we know to be highly correlated, so that a relatively slight selection in
a number of the latter might produce a closer correlation in each of them than a relatively intense selection of
eye colour.

" The value ofc, for span is still greater than unity, 1'033, but no longer unreasonably so, since the standard
error is about 0·078. Ifwe were considering span alone the evidence would be strongly in favour of our third
hypothesis. A remarkable confirmation of this is that Pearson and Lee (lac. rAt. p. 375), considering organic
and marital correlations alone, show that the observed correlations could be accounted for by the following
direct selection coefficients:

Stature

0·2374

Span

0·0053

Cubit

0·1043

NaturaJly these cannot be taken as final, since there are a large number of other features, which may be
connected with these and at the same time may be subject to sexual selection. The correlations of cross
assortative mating are in fact smaller than they would be if direct selection to this exten~were actually taking
place. The influence ofother features prevents us from determining what proportion ofthe observed association
is due to direct selection, but ifinheritance in these growth features is capable ofrepresentation on a Mendelian
scheme-and our results have gone far to show that this is likely-it would be possible to distinguish the two
parts by comparing the parental and fraternal correlations with those for grandparents and other kindred.

" On our present suppor;;ition that the association is primarily in z and for the case of span this seems likely,
the correlations for uncle and cousin will be the same as those for grandparent and great.grandparent, being

given by the formulae (1 +A)' (1 +A)'
Cl c2 -2- and Cl c2 -2- ,

leading to the numbers

Grandparent
Great-grandparent

Stature

0·3502
0·2421

Span

0·2907
0·1861

Cubit

0·2737
0·1793

Fisher now considers the hypothesis that the observed correlation # between the phenotypes
x ofthe parents arises as the summation of two effects. The first is a direct correlation 8, which is
the result of direct sexual selection. Fisher calls this the 'coefficient of selection'. The second
part, # - 8, is a reflection of a correlation between their z-values, arising differently. Each of these
parts can be treated as regression coefficient. He thus supposes that the effect on a child is the
sum of the effects which arise by these two causes.

Now the direct correlation or regression 8 between the phenotypes x of the parents produces
a correlation c1C28 between their z-values, as shown in Section 22, and hence a regression", C2 8

ofthe z-value ofthe father on that ofthe mother. The further correlation # - 8 between the parents'
x-values is a reflection of a correlation (#-8)/C1C2 betweentheir z-values, as shown in Section 17,
and hence a regression (# - 8)/C1c2• If we suppose that these can be legitimately added together,
the total regression of one z-value on the other is

A = C1C28+(#-8)/C1C2

and this is equal to their correlation.
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Similarly the direct correlation 8 produces a regression iCl c2(l + 8) of child on parent, and the
correlation (It - 8)/Cl C2 between the z-values of the parents produces a further regression (It - 8)/2.

Adding these, we find for the total regression of child on parent, which is the same as the correla­
tion between them

p = iCl C2(l +s)+i(lt-s).

The argument by which .I!'isher deduces the value

f = icl(l +C2+ 2c2 A)

= iCl + tClc2(l + 2A)

for the correlation between sibs still holds. From it we find

c1 = c1c2(l +2A) - 4f.

"24. Neither these nor the similar table for the first hypothesis aeeord ill with the value obtained for
uncle and nephew, 0-265, from measurements of eye colour. It may, however, be thought that neither of'
them give high enough value for eousins. Certainly they do not approaeh some of the values found by Miss
Elderton in her memoir on the resemblance of first cousins (Eugenics Laboratory Memoirs, IV). Series are there
found to give correlations over 0,5, and the mean correlation for the measured features is 0·336. From special
considerations this is reduced to 0,270, but ifthe similarity offirst cousins is due to inheritance, itmust certainly
be less than that between unele and nephew. No theory of inheritanee eould make the eorrelation for eousins
larger than or even so large as that for the nearer relationship.

"It will be of interest finally to interpret our results on the assumption that the figures quoted (Artiele 20)
represent aetual eoeffieients ofseleetion. Manifestly it would be better to obtain the value of A experimentally
from the ratio of the ancestral correlations, using the collateral correlations to determine what are the marital
eorrelations for y. For the present we must neglect the possibility of an independent seleetion in y: and
although we know that the figures are not final, we shall write 8, the eoeffieient ofseleetion, equal to 0·2374,
0·0053, and 0·1043 in oUr three cases.

H Further, let

so that
whence we deduce

2p = ",",(1+8)+1'-8,

Stattlre

0·7841
0·2410
0·6205

Span

0·7108
0·2761
0·6381

Cubit

0·6725
0·2090
0·6045

0·89401-03701·0112",
the values of A being now in much closer agreement for the three features. Further, from the fraternal
correlation we have

with a mean at 0·9821.
" Again, for the dominance ratio

0·2763 0·3880 0·2940 0·3194 (mean),

leaving a trifie under 2 per eentfor eauses not heritable, btlt requiring high values about 0·32 for the dominanee
ratio.
"25. The Interpretation of the Statistical Effects of Dominance. The results whieh we have obtained, although
subject to large probable errors and to theoretical reservations which render an exact estimate of these errors
impossible, suggest that the ratio 62/0'2, the statistical measure of the extent of dominance, has values ofabout
0·25 to 0·38. In his initial memoir on this subject Karl Pearson has shown that, under the restricted conditions
there eonsidered, this ratio should be exaetly t. Subsequently Udny Yule (Conferenee on Genetics) pointed
out that the parental correlation could be raised from the low values reached in that memoir to values more
in aecordanee with the available figures by the partial or total abandomnent ofthe assumption of dominanee.
To this view Professor Pearson subsequently gave his approval: but it does not seem to have been observed
that if lower values are required-and our analysis tends to show that they are not-the statistieal effeets are
governed not only by the physieal ratio d/a, but by the proportions in whieh the three Mendelian phases are
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present. This effect is an important one, and very considerably modifies the conclusions which we should draw
from any observed value oftha dominance ratio.

"The fraction 02/a 2, of which the numerator and denominator are the contributions of a single factor to e2

and 0'2, is equal, as we have seen (Article 5, equations V-VII) to

2pgd2

(p + g) 2a'-'-: 2(p'-g') ad-t-(p' -t-q2)d"

and depends wholly upon the two ratios dla and pig. We may therefore represent the variations of this function
by drawing the curves for which it has a series ofconstant values upon a plane, each point on which is specified
by a pair of particular values for these two ratios. The accompanying diagram (fig. 1) shows such a series of
curves, using dla and log (pig) as co·ordinates. The logarithm is chosen as a variable, because equal intensity of
selection wiII affect this quantity to an equal extent, whatever may be its value; it also possesses the great
advantage of showing reciprocal values of pig in symmetrical positions."
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The dominance ratio given above is obtained by simple substitutionofP = p2, Q = pq, R = q2,
P +q = I, into (V) and (VII).

In the paragraph below, the figure 3 is misprinted for 0·3.

"It will be seen that 3 is not by any means the highest value possible: when d = a, and when pig is very
groat, any value up to unity may appear; but high values are confined to this restricted region. When d/a is
less than 0·3 the ratio is never greater than 0·05, and we cannot get values as high as 0·15 unless dla be as great
as 0·5. On the other hand, all values down to zero are consistent with complete dominance, provided that the
values ofpig are sufficiently smaU.

"We know practically nothing about the frequency distribution of these two ratios. The conditions under
which Mendelian factors arise, disappear, or become modified are unknown. It has been suggested that they
invariably arise as recessive mutations in a dominant population. In that case pjq would initially be very high,
and could only be lowered if by further mutation, and later by selection, the recessive phase became more
frequent. These factors would, however, have little individual weight if better balanced factors were present,
until pig had been lowered to about 10. In face of these theories it cannot be taken for granted that the
distribution of these ratios is a simple one. It is natural, though possibly not permissible, to think of their
distributions as independent. We may profitably consider further the case in which the distribution is synl·
metrical, in which the factor of known a and d is equaUy likely to be more frequent in the dominant as in the
recessive phase.

" For this case we combine the numerators and denominators of the two fractions

2pgd' _..__...__....

(p +g)' a' - 2(p' - g') ad + (p' +g') d'
2pgd'

and ---------------...--
(p +g)'a' +2(p' - g') ad+ (p' +g') d 2 '
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and obtain the joint contribution 2pqd,
(p +q)' a'+(p' +q') d'

the curves for which are shown in fig. 2, representing the combined eftect of two similar factors, having their
phases in inverse proportions. It will be seen that complete dominance does not preclude the possibility oflow
value for the dominance ratio: the latter might fall below 0·02 if the greater part ofthe variance were contri­
buted by factors having the ratio betweenp and q as high as 100 to 1. This ratio is exceedingly high; for such
a factor only one individual in 10,000 would be a recessive. We may compare the frequency of deaf mutism
with which about one child in 4000 of normal parents is said to be aftlicted. It would be surprising if more
equal proportions were not more common, and if this were so, they would have by far the greater weight.

"The fact that the same intensity of selection affects the logarithm of p/q equally, whatever its value may
be, suggests that this function may be distributed approximately according to the law of errors. This is a
natural extension of the assumption of symmetry, and is subject to the s~me reservations. For instance, a
factor in which the dominant phase is the commonest would seem less likely to suffer severe selection than one
in which the recessive phase outnwnbers the other. But if symmetry be granted, our choice of a variable
justifies the consideration of a normal distribution.

"Writing /; for log,p/q and rr for the standard deviation of /;, we have

p = ei'/2 cosh t/;, q =.-i'/2coshtl: and 2pq = isech't/;.
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Fig. 2. Values of log" (p/q) (upper figures) and of p/q (lower figures).

" Hence we have to evaluate

E=--+-J'" tsech't/;·e-"j'U'd/;= / J'" tsech'irr/;.
a'",,21T -0Cl ",21T -0:)

and the dominance ratio derived from the whole group is

Ed2

ft' +(1- E) d"

.-i,' d/;, (XXVIII)

II E is a function of 0" only, which decreases steadily from its value! when (j = 0, approaching when cr is
large to the function 2/(rr ,J21f). The function (16 + 16rr' + }1f'rr·)-t osculates it at the origin, and appears on
trial to represent it effectively to three significant figures. This function has been used for calculating the form
of the accompanying curves. Fig. 3 shows the course of the function E. Fig. 4 gives the curves comparable to
those of figs. 1 and 2, showing the value of the dominance ratio for different values d/a and rr. If the assump­
tions upon which this diagram is based are justified, we are now advanced some way towards the interpretation
of an observed dominance ratio. A ratio of 0·25 gives us a lower limit of about 0-8 for d/a, and no upper limit.
If the possibility of superdominance (d > a) is excluded, then the ratio of the phases must be so distributed
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that the standard ratio "~ is not greater than about 3 : 1. A greater value of the standard ratio would make
the effect of dominance too small, a smaller value could be counteracted by a slight reduction ofd/a. We have
therefore no reason to infer from our dominance ratios that dominance is incomplete. We may speak of it as
having at least four-fifths of its full value, but we can set no upper limit to it.
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II 26. Throughout this work it has been necessary not to introduce any avoidable complications, and for this
reason the possibilities ofEpistacy have only been touched upon, and small quantities ofthe second order have
been steadily ignored. In spite of this, it is believed that the statistical properties of any feature determined
by a large number of Mendelian factors have been successfully elucidated. Due allowance has been made for
the factors differing in the magnitude of their effects, and in their degree of dominance, for the possibility of
Multiple Allelomorphism and ofone important type ofCoupling. The effect ofthe dominance in the individual
factors has been seen to express itselfin a single Dominance Ratio. Further the effect ofmarital correlation has
been fully examined, and the relation between this association and the coefficient of marital correlation has
been made clear.
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H By means oJt the paternal correlation it is possible to ascertain the dominance ratio and so distinguish
dominance from all non-genetic causes, such as environment, which might tend to lower the correlations: this
is due to the similarity in siblings of the effects of dominance which causes the fraternal correlation to exceed
the parental. The fact that this excess of the fraternal correlation is very generally observed is itself evidence
in favonr of the hypothesis of cumulative factors. On this hypothesis it is possihle to calculate the numerical
influence not only ofdominance, but oftha total genetic and non-genetic causes ofvariabiIity. An examination
of the best available figures for human measurements shows that there is little or no indication of non~genetic
causes. The closest scrutiny is invited on this point, not only on account of the practical importance of the
predominant influence ,of natural inheritance, but because the significance of the fraternal correlation in this
connection has not previously been realised.

"Some ambiguity still remains as to the causes of marital correlations; our numerical conclusions are
considerably affected according as this is assumed to be ofpurely somatic or purely genetic origin. It is striking
that the indications of the present analysis are in close agreement with the conclusions of Pearson and Lee as
to the genetic origin of a part of the marital correlation, drawn from the effect of the correlation of one organ
with another in causing the selection of one organ to involve the selection of another. This difficulty will, it is
hoped, be resolved when accurate determinations are available of the ratio of the grandparental to the parental
correlation. From this ratio the degree of genetic association may be immediately obtained, which will make
our analysis of the Variance as precise as the probable errors will allow.

" In general, the hypothesis of cumulative Mendelian factors seems to fit the facts very accurately. The only
marked discrepancy from existing published work lies in the correlation for first cousins. Snow, owing
apparently to an error, would make this as high as the avuncular correlation; in our opinion it should differ
hy little from that of the great-grandparent. The values found by Miss Elderton are certainly extremely high,
but until we have a record of complete cousinships measured accurately and without selection, it will not be
possible to obtain satisfactory numerical evidence on this question. As with cousins, so we may hope that more
extensive measurements will gradually lead to values for the other relationship correlations with smaller
standard errors. Especially would more I1ccurate determinations of the fraternal correlation make our
conclusions more exact.

"Finally, it is a pleasure to acknowledge my indebtedness to Major Leonard Darwin, at whose suggestion
this inquiry was first undertaken, and to whose kindness and advice it owes its completion."


