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*If a factor have a large number, #, of allslomorphs, there will be n homozygous phases, sach of which is
associated with a certain deviation of the measurement under consideration from its mean value. These
deviations will be written 4,4,,...,%, and the deviations of the heterozygous phases, of which there are
n(n— 1}, will be written 5y, 713, f4e, and s0 on. Let the n kinds of gametes exist with frequencies proportional
to p, ¢, 7, 8, and 50 on, then when the mating is random the homozygous phases must ocour with frequencies
proportional to g2 ¢%,%, ..., and the heterozygous phases to 2pg, 2pr, 297, ...

* Henee, our measurements being from the mean,

P gMe st + 207+ 2P0+ = 0. (XII¥)
*“ As before, we define «? by the equation
P24% + g3 4+ r¥3 + . 4 2pg sty + 2Pt kL = af (1%

and choosing I,m,n, ...,so that
PA2— 0B+ g?(2m— )2 + ... + 2pg(l+ m—J P + 207+ n—F18)% + .0
is a minimum, we define 8% by
4i2p2 4+ 4mPq? + ... + 2pq{l+ m)2 + 2pr(l 4+ n)2... = B2,
the condition being fulfilled if U= phi+ e+t
m = Phat+ @+ 1fas oo

and 80 on.
“ Now f? = S(4Pp?) + 8(2pgil+m}?),
= §{2p(1+p) ¥*) + S{4pgim),
and since pl+gm+rat.. =0,
B2 = S(2pi%),

which may now be written as a quadratic in ¢ and j, represented by the typical terms

2p%2 + 4p2qi; §1o -+ 20g(D T 9) 53, + 4P1T 12715

We assume there are % alleles 4., ..., 4,, with frequencies p, g, 7, ... respectively. The » homo-
zygotes are A Ay, .. A, A,
with values Uiy eees by
and there are {n(n— 1) heterozygotes 4, 4,, A; 4s, ..., whose values are ji,, jig, -+
Put 8 = P42 —i )2+ .. 2pq(l - m—j)% + .
where I,m,n, ... are to be chosen by least squares to give the linear additive contribution to the

variance. (Fisher uses 8 without a suffix for summation.)
The minimization equations are typified by
1a8, . . .
0 =352 =22 —i) +pgl+m—jig) +pril+n—jig) +...

=p{l{p+ 1)~ i~ @~z — ... Fgm+m+t ..}
and since p + 0, l=pt—qjp—1ig— ... + (Pl+gm+rn+...) = 0.
Multiplying this equation by p, the corresponding equation by g¢,r, ..., and adding we get

(pl+gm+..)+(p+g+...)(pl+gm+...) =0
because we have defined i,, 4, ... and jy,, ... so that the population mean
DYy + %+ ... + 200555 + ...

is zero. Hence pl+gm+...=0,

and D= piy+ @t ist....
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The linear component of variance is then
B2 = 4{lpt g b4 2fpq(l+m) .
But pl+gm+...= 0, and therefore
PR+ g*mPt . 4+ 2pglm ... = 0.

. Taking twice this from §? we get

2= 200+ 2gm2+ .. ) (p+g+...)
= 2pl+ 2gm®+ ...,

and inserting the values of I, m, ... we get

B =2p(Pis+qirat - )P+ 20(PJrat Pa+ et 2+
= 2P%+ g3+ .. )+ 4D i+ P9 Jrat o) + 2P+ PPt o PPt )
+4(Pgrise Jrst ...
of which the typical term is that given by Fisher.

“Now we can construct an association table for parent and child as in Article 6, though it is now more
complicated, sinee the j’s cannoct be eliminated by equation (XII*), and itg true representation lies in four
dimensions; the quadratic in ¢ and j derived from it is, however, exactly one half of that obtained above, so that
the contribution of a gingle factor to the parentsl product moment is 342 Hence the parental correlation is

172
2 g2’

whers 7 and ¢ retain their previous meanings.”

The association table between parent and offspring could be written down as a
inn+1)xin(n+1)

table but we need only to write out the typical terms. Part of these can be obtained from the
previous parent—offspring table.

For the parental types we can take 4; 4, and 4, 4,. The possible offspring types are then
typified by 4, 4,, 4, 4,, A, A;and A, 4;. Theresulting table is shown as Table P. The covariance,

Tasre P
Parental type -

Offspring p % N

type A A, A A4,

4,4, ° g

4,4, P’q 2e(p+g)

A, 4, - P per

Ay d, 0 rgr

or, as Fisher calls it, the quadratic expression, is then obtained by summing all terms typified by
the above, thus giving

PR+ PR+ ...+ 20%0, Jrat o+ DE(D + ) G% A+ 209010 Jrat - = $5°

counting all the terms in their proper multiplicity.



P.A.P. MORAN AND C. A. B. SMITH 39

* Moreover, from the fraternal table we may obtain & quadratic expression having for its typical terms
301+ p)*if + $0%%, f + P*9(1 + D)%y frp + 2710 o
3pa(1+p + g+ 2p0) % + Pl + 2P) f1z 12 + 20975 12 Far
which, when simplified by removing one quarter of the square of the expression in (XII¥*), becomes
1P*(1 + 2p) i + P70 J1a + 5PG(L+ P +9) Ih + 2T 1 Frws
or, simply, o+ 53

The fraternal table is rather more complicated to construct, We start from Table Q which gives
the possible offspring from all possible types of mating which are 7 in number.

TABLE Q

Mating Frequency Offspring
A A, x 4,4, pt A, 4,
A d;x A A, dp®q 34, 4,+%4, 4,
A A x Az A, 2ptg® A, A4,
A, A x Ay 4, dptqr 34, 4,+44,4,
A Ayx 4,4, ipg® 34,4, +34,4,+34,4,
A, 4,x 4,4, 8pigr 34, 4,434, 4, + 34, 4, +14, 4,
A4, x A, 4, 8pgrs 34, 4,434, 4, + 34 4.+ 14,4,

From this table we can pick out the possible pairs of sibs and their relative frequencies, as given
in Table R, one sib corresponding to the columns and one to the rows.

Tasre R

4,4, A; 4,

il j12
4,4, 4 Y1 +p)® p*(1+p)
4,4, J1z piq(14+p) tpg(l+p+a+2pg)
4,4, J1s pr(l+p) $pgr(1+2p)
Ay 4, Jes pigr $pgr(l+2q)
Az A, iy iptr® pgrt
54, Jaa s $pgrs

To illustrate how these frequencies are obtained consider the case where both sibs are 4, 4,.
This can happen in the first, second, fifth and sixth type of mating and the total frequency is
P =4p¥g+r+.. )+ oM+ 4. ip(gr g+ st
= p'+3p%(1 - p) +1p*(1 - p)* = ip*(1 + ).
(This is more easily obtained by the Li and Sacks method mentioned before.) Adding together all
the resulting terms we get
PP+ P+ @R+ + 3PP + % bt + 0%+ D)oy i+ PP+ D) Jus F -
+2%qris Jos + %480 Jaut -+ E3PG(L+ D+ g+ 209)fT + 30r(L+ P+ 7+ 2pr) s+ .
+29r(1 + 2p)j1g Jis+ Pgs(1+ 2P)j1a Jrat -+ + 2097015 Jag + oo
thus agreeing with Fisher’s sum of typical terms except for his fourth term which should read
Dqriy o3 and nob pgri; fis.
The square of the expression in (XII*) is
A{BYyt Pyt 20g 1+ 2T+ = 0,
and subtracting % of this from the above we get }(x*+ f?) as stated.
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** Here, again, the introduction of multiple allelomorphism does not affect the simplicity of our results; the
correlation between the dominance deviabions of siblings is still exactly }, and the fraternal correlation is
diminished by dominance to exactly one half the extent suffered by the parental correlation. The dominance
ratio plays the same part as it did before, although ita interpretation is now more complex. The fraternal
correlation may be written, as in Article 6,

55 (1 de?).

“18. Homogamy and Multiple Allclomorphism. The proportions of these different phases which are in
equilibrium when mating is assortative must now be determined. As in Article 10, let I, 1,,... be the mean
deviations of the homozygous phases, and J,;,J 15, ... those of the heterozygous phases. Let the frequency of
the first homozygous phase be written as p*1+f1;), and the others in the same way. Then, since p is the
frequency of the first kind of gamete,

Pt afiatifis+... =0,

and Of1et+qfaa+rfost...=0,
and so on.

* Let o+ gl +rF g+, = L,
ot alytrdat... =M,
and so on, then L, M, ... represent the mean deviations of individuals giving rige to gamsetes of the different

kinds; hence, by Article 9, 2pg(1 +1g) = 2pg etV - LM,
that is, Jra=pfV.LM. (XIV#)

The aim of paragraph 15 is to extend the treatment of assortative mating in paragraphs 9-13
to the case where each locus may have more than two alleles, all loci remaining, as before,
unlinked. Since we are concerned with second-degree statistics (variances and covariances) it is
sufficient to consider the loci in pairs.

In the stable population with assortative mating I, L, ... and Jy,, Ji5, ... are taken as the mean
values of the deviations from the population mean of the respective homozygotes 4, 4,, 4, 4,, ...
and the heterozygotes 4, 4,, 4, 4,, ..., with frequencies p*(1 +£,), ¢3(1 +fo3), ... and pg(l+fi5},
pr(1+fs), ete. Then the equations such as -

putafiet...=0

are necessary in order that the gene frequencies amongst all mating pairs should be exactly

P, ¢, etc.
Notice in particular that f,;, fis, ... are not analogous to the fi,, ... used in the previous discus-

sion of assortative mating where there are only two alleles at each locus. The f’s here refer to a
single locus, and when referring to another locus we shall write fi3, f1s, ....
The average deviation of the class of individuals which give rise to the gamate 4, will be
(1/2p) {2p20 + 2pgJ s+ ...} = L, (XTV*q)
to the first approximation, there being further terms involving f’s which we can ignore. By the
type of argument used before we then have

LM
2pq(1 +f12) = 2pgexp {‘“7}

and Sfrz = uLM|V.

The frequencies of 4, 4, and B, B, are 2pg(1 +f,) and 2p’¢’(1 + f1,), and their joint frequency
which we now want to find is written as

dpgp'q' (1 + f1o10)
Or as 4pgp'q (1 + f12) (1 +F12) (1 +fig10)-
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Note that the absence or presence of a dash on f;, means that f;, refers to 4,.4,, and f1, to
B, B,, whilst on the other hand f5, and f1, 15 both refer to both factors together, the difference
being in their definition. Since the f’s are all small we expand the products and neglect small

term , btaini ' ’
5 OblaIning J1212 = fra+fia 12100

In the absence of any assortative mating the gametic frequency of A, B; would have been pp’,

but when g + 0 the proportionate increase, using the definition of f1, ;,, etc., must be
PP P9 P st + @0 flan 90 1212+ @ fla+ -
+ Tp’fis’]_]_ +...= Fll’ by deﬁnition.

Thus the frequency of 4, B, in the gametes is pp’(1 + F},). The mean value of individuals giving
rise to this gamete is L+ L' by the argument leading to (XIV*a) and so on, so that (XIX*)
follows. In this equation the #’s are functions of the f,,,, ete., which are known when the

frequencies p, p’, ... are given, and we want to solve for the f;, 5, etc.
Fisher guesses that the solutions must be

Sieae = (W V) (L+ M) (L' + M)
and similar formulae. Putting these in the equation for Fy, we get
(] V){pp'(2L) L") + pg' QLY (L' + M') + ... +-qp"(L + M) (2L)
@ (L+MY(L'+ MY+ ... +rp'(L+ N)(2L) + ...}

= (u/VV{L+pL+qM+ . ML +pL' +qM' + ...}
= (WV)LL,
since pLb+gM+...=0, pL'+qM'+..=0.

* The association between the phases of two different fuctors requires for its representation the introduction
of association coefficients for each possible pair of phases. Let the homozygous phases of one factor be
numbered arbitrarily from 1 to m, and those of the other factor from 1 to n, then, as the phase (12) of the first
factor oceurs with frequency 2pg(1 4 f,,), and of the second factor, with frequency 2p’¢’(1 +f,), we shall write
the frequency with which these two phases coineide in one individual as 4pgp’g’(1+f; 15), Or as

dpgp'q’ (1 +f10) (L + £} (1 +fig.10h
50 that Srae = frzoae+ et Fla
“ The proportional increass of frequency of the gametic combination {1.1) is
P PONPR S 713 MU I ~af PP SOUNE ¢/ ) MAPE -/ M o6 TS SO
and so on.
*“ By virtue of the equations conneeting the f’s of a single factor, this expression, which we shall term F,,,
has the same value, whether written with dashed or undashed f’s.

“ Individuals having the constitution (12.12) may be formed by the union either of gametes (1.1} and (2.2),
or of gametes (1.2) and (2. 1); hence the equations of equilibritm are of the form

2fts 0y = I+ Fog+ (e VI(L+ L) (M 4+ M)+ Fiy + oy + (pf VI{L 4 M) (M + L),

but 2f12.10 :2f{2.12—2f12“2f1’2
= 21y 10— (20 V(LM + L/ M),
therefore 2izae = Byt o+ By + oy + (0 VHL+ M) (L' + M) ' (XIX*)

*“ By analogy with Article 12, the solution
Sra.1a = @V (L+ M) (L' + M)

suggests itself, and on trial it leads to Fy = (@/V)LL,
and is thereby verified.”
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To obtain L we argue as follows. Write the mean deviation of the homozygote 4, 4, from the
population mean as I, = i, +if where i, is the deviation due directly to the genotype 4, 4, if the
other genes were segregating independently of the 4 locus. ¢} is then the extra deviation produced
~ by the other genes in virtue of the association due to homogamy. The homozygote 4, 4, has

frequ
auency PA(L+fy)

and the double homozygote 4, A4, B, B; has frequency
P21 +f1) (L +f10) (U +Fig, 1)

From this it follows that the conditional probability that an individual is B, By, if it is known
thatitis 4, 4,1 ' '

AILIS £1 40, 18 PHIH ) L+ fig, 1)
which to a reasonable approximation can be written as

PL+[ 1+ 0
Similarly, the probability that an individual is B, B, when it is known that it i3 4,4,, is
i t ]. L r

Approximately ¢ (L +fia+fis,10)

The total additional contribution of the individuals at the B locus to the measurement of 4, 4,
individuals is therefore

P+ ) i+ a2 A+ foa ) tot o +20°C (L +fla Hfinan) i+
We have already defined the effects 4,, j., in such a way that the mean effect is zero, i.e. so that

PP+ )it A2+ fra) et = 0.
Thus the additional increment is simply

Pttt 200 i fat oo

We now consider the sum over all loci other than the 4 locus and we denote this summation
by the symbol Z. We get

L=+ + 300 i+ + 20 52 Jlot -}

and similarly Ji2 = fro+ Z{p o t1+ .- + 20 fraaz 12+ - b
the factor 2 occurring to include two terms of equal value.
Write . . .
l = p31+”12+?’313+ cave
Then

L=ph+qhs+...
=1+ Z{p% (funp+fiand+. )+ .+ 200 fir 22 Hfr21ag+ ) .01

Using the values of the f’s which we have found above, and
pL+qM+...=0,
we get Juup+fieng+... =@ V)yL2L),
and similarly S+ fisreg+... = @/ V)L + M)
(these results being misprinted in the text). Using these we get finally
L =1+ (uL{ V) S{(@L) 9%} + ...+ 2L + M) D' fig + ...
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Since l’ = p"l‘;i + quiz +...
this can be written L=+ uliVYE2p L +2¢'m' M +...}.

Since each individual locus is regarded as contributing a vanishingly small component of the
total variance we can now suppose the summation to be taken over all factors at all loci and not
merely all those other than the locus being considered. We can then put L = I+ AL, where

A = (uV)SEPTUL +2g'm M +..}.

Since A is independent of the locus being considered, we also have

L'=U+4L,
so that '=(1-A)L,
and then A(l—A) = (g/TYZ(Q-A) (2p'TL +...)
= (u/VYZ(2p' 1'%+ 2¢'m2+...)
= WP (XXII¥)

In a similar way substituting for the f’s in the formulae for 7 and Ji,, and then putting
L = 11— A4), ete. we get

. 2 i TETd L r LAY
I = a1+?6{f:4—)~2{4p B 4+ 20U+ ) fig

241

=t g

o . 2 Fi ey r_r ! ! -
and s =312+V-(—1£L—A—)—2{2p 2I+m) iy + ... + 4p'g G+ m) (U + )i+ ...}
.4
=312+I_—'A(l+m)-

* Henice we may evaluate L, L/, ...,for

L =pl +qJyg+rL5+... +l=E{p% (pfy u+fint ---)'|'219’9”.7.1'2(}2)”11.12+‘_1f12.1z+ L PP

but Pt efeat...= @/ V) LI+ M),
therefore L=14+(p/VYLE{p" (L' + L")+ 2p°qf (L' + M) + ...},
=14 {p/VYLE(2p VL + 29’/ M’ . .).
“Let L=Il4+ AL,
then L=1j(1-4),
and A= (u/V)E2pTL +2¢'m M’ +...),
therefore A(l—A) = (p/V)E(2p T2 4 2g'm"? +...)
={p/V)ZF,
therefore A(l—A) = (ufV)r2 (XXII*)

so that the association constant, 4, appearing now in the constant ratio I: L, plays exactly the same part in
the generalised analysis as it did in the simpler case.
* It may now be easily shown that the mean deviations, I and J, may be calculated from the equations

I, =i, + 2411 - 4), }
and Jyg = g H[A/(1 — AY] (F+m),

and that the variance reduces, as beforse, to
ot [A)(1—A)] 7% (XXV*)

(RXIV*)
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*16. Coupling. In much modern Mendelian work coupling plays an important part, although the results of
different investigators do not seem as yet to converge upon any one uniform scheme of coupling. The type
found by Morgan in the American Fruit Fly (Drosophila) is, however, of peculiar simplicity, and may be found
to be the general type of the phenomenon.

* Anindividual heterozygous in two factors may ows its origin to the union of either of two pairs of gametes

either (1.1) x {2.2) or (1.2) x (2.1); when coupling ocours, the gametes given off by such an individual, of all
these four types, do not appear in equal numbers, preference being given to the two types from which the
individual took its origin. Thus in a typical case these two types might each occur in 28 per cent of the gameteos
and the other two types in 22 per cent. Coupling of this type is reversible, and occurs with equal intensity
whichever of the two pairs are supplied by the grandparents. We may have any intensity from zero, when each
type of gamete contributes 26 per cent to complete coupling, when only the two original types of gamete are
formed, and the segregation takes place as if only one factor were in action.
~ The above analysis of polymorphic factors enables us to compare these two extreme cases; for there are
9 phase combinations of a pair of dimorphic factors, or, if we separate the two kinds of double heterozygote,
10, which, apart from inheritance, can be interpreted as the 4 homozygous and the 6 heterozygous phases of
& tetramorphic factor. The 4 gametic types of this factor are the 4 gametic combinations (1.1), (1.2), (2.1),
2.2).,” . :

This mapping of a system with two factors at each of two loci on to a system with four factors
at a single locus is particularly interesting and can be illustrated as follows.

Suppose that at the first locus the two factors denoted by 1 and 2 in the text are 4, and 4,,
and similarly B, B, at the second locus. The nine phase combinations are then

A A, BB, A, 4,B,B, A,A,B,B,
A,4,B,B, A,4,B,B, A,A4,B\B,
A, 4,B,B, A4,4,B,B, A,4,B,B,.

When linkage (‘coupling’ is Fisher’s term) is considered the double heterozygote 4, 4, B, B,
really corresponds to two different heterozygotes according as whether 4, and B, are on the same
chromosome or on different chromosomes. We shall denote these two types by (4, B,) (4, B,) and
(4,B;) (4, By).

Now consider a single locus with four factors Cy, C,, C; and C}. This results in four homozygotes
and six heterozygotes. If we identify the four factors Cy, G, €, and () with the pairs of factors
4, By, A; B,, A, B, and A, B, respectively we have the following mapping of the two loci situation
on the single locus situation.

A A, B B, C,0, (4, B,)(4,B) 0,0,
A4,4,B,B, ¢, C, A, A4,B,B, 0,0
A, 4,B,B, 0,0, A,A,B, B, C,C,
A, A,B, B, ¢, C, A,A4,B, B, .,
(4, B)) (4, By) GG Ay Ay By By Ci Gy

Thus to deal with linkage Fisher considers the two possible extreme cases of no linkage and
complete linkage when there is assortative mating but, as above, no epistatic effects.

Case I. Here we have two unlinked loci with 4,, 4, at one, and B,, B, at the other. These have,
as usual, gene frequencies p, ¢, p’, ¢', respectively, and as before the coefficient of assortative
mating is #. The mean deviations associated with 4, 4,, 4, 4,, 4, 4, are again s, j, k,and ', 5', k" .
for the other locus.

Let L be the mean deviation produced in the population by a gamete carrying 4,, and define
M, L', M', simjlarly. Thus the mean deviations associated with gametes 4,B,, 4, B,, A, B,,and
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Ay, B, are L+ L/, L+ M’ (not M+ M’ as in Fisher), M+ L', and M + M’. By the theory given
above the frequencies of these four gametes are

pp' {1+ VYLL},  pg'{l+(p/V) LM},
gp'{1+ (u/VYML},  q@'{l+(u/V) MM}

These are denoted by Fisher as p, q,r,s.
The frequency of a double homozygote like 4, 4, B, B, is, by the previous argument,

P L+ fi11) = 2021+ 1 i)
approximately, where
' =LAV, fiu=pL?V, fu=4pLL|V.

Thus to this order of approximation the frequéncy of A, 4,B, B, is
D1+ (] V) (LA + L2+ 4LL'Y} = {pp’ (L + () V) LL WP {1+ (uf V) (L + L),

Case 11, If there is complete linkage the four pairs 4, B,. A, By, 4, B,, 4, B, each behave like
a single gene. We suppose they each have the frequencies given above as p,q,r,s. We also
suppose that the deviations produced by these ‘genes’ are the same as occurred in the previous
case 50 that, for example, a zygote 4, 4, .5, B, would have the dev1a,t10n t+4’, the genes at any
other loci being held fixed. '

We must first investigate whether the genotypic frequencies in the second case will be the same
as in the first. If there is no assortative mating (4 = 0) this is obviously true since the frequency
of 4; A, B, B, in the unlinked system will be (pp’)? which is the square of the frequency, pp’, of
the ‘gene’ A, B, in the linked system. :

We have also seen that assortative mating changes the frequency of gene combinations at any
pair of loci only by a quantity of the first order of smallness. Thus to this degree of approximation
the ‘genotypic’ frequencies should remain the same.

The mean deviation in individuals carrying the gamete 4, B, will then be the same in both
gystems. This is L + L’ which Fisher writes as a capital L. The similar result holds for the other
gametes.

The variance, ¥, in the population in the two cases should also be the same.

Then treating 4, B,, ete., as single genes the frequency of a genotype such as (4, B,) (4, B))
will be, to the first order of approximation,

P*{1+(w/V)LP = {pp'(1+ () V) LL )P {1 + (0] V) (L + L)%,

which agrees exactly with the result obtained in Case I above. Thus to this degree of approxima-
tion, which is as far as Fisher goes in his theory, the two systems of completely unlinked and
completely linked genes agree as regards the frequencies of occurrence, the magnitudes of the
effects produced by genes and gene-combinations, and the effect of assortative mating.

Fisher does not explicitly prove that the correlation between relatives will be the same in the
two cases. To show this it is necessary to show that the values of 72 = £§2 are equal since the
correlations will be later expressed in terms of 72, V, p, and A4 (4 being given by equation (XX1I))-

To prove this we return to the original definition of #2. To simplify the notation denote the mean
deviations ¢, j, k produced by 4, A;, 4, 4,5, A5 A3 bY j11, 512 = Je1» J2s (notice the change in notation
from Fisher’s use of these symbols). We shall also write the gene frequencies p, ¢ of 4, 4, as
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1, Py As before we proceed by fitting ‘representative values’ for which we shall abandon Fisher’s
notation ¢+ b, ¢, ¢ —b, and write instead

Representative value for 4,4, =, +x,,

where 7, s = 1, 2. These values are to be found by least squares. Neglecting the small changes in
frequency due to assortative mating we have to minimize the sum

Sl = z?rps(jrs — &, — xs)zs
which is equal to P37 —c—b)2 4+ 2pg(F —¢)® + ¢*(k — ¢ + b)?
in Hisher’s notation. The conditions for a minimum are that

108, .
Q% = %ps(.?ra“"xr_ws) = 0.

£ is then defined as the variance of the representative values so that
£ = p*®+ 2pqj® + g7 — (p% + 2pqj + ¢°k)?
= Zp, Psl@, +25)* — {20, Dol + )}
= 2(Zp,a}— M?),
where M = Zp,x,.
The same argument applies if we have multiple allelomorphs 4, (r=1,...,%), and a similar

definition applies to the alleles at the second locus for which the representative values, #] + «;, are

the solutions of U
€ solutions O Zps(.?rs'"%""ws) =0,
-

Now consider the system with complete linkage so that the ‘alleles’ are (4, B,). Since thereisno
epistacy, the mean deviation produced by 4, .4, B, B, is j,; +ju. all other genes being fixed. If we
neglect the small deviations in frequency produced by assortative mating we can find a ‘repre-
sentative value’, z,,, for the ‘gene’ (4, B,) by minimizing the sum

Z.’p'rps:p; P:L(jrs +jm — Ty xsu)z'
The conditions for this are, by differentiating,

2 %1 ps.pu(jrs +jtu . xsu) = 0.

The solution of these equations is simply ,, = ,+x; as can be verified by substituting these
values and using the previous equations for ,, 7.
The new value of 2 for the system with complete linkage is
B = 28p, (@, + %) — A Zp, pi (@ + )}
= 2Zp; Zp,a} + 2, @, Tp; v; + Ip, Tl #° — (Zp; Tp, @, + Tp, 2py #1)%)
= 2{Zp, 2} + 2M M’ +Zp) > — (M + M%)
= 2Zp, 22— M2+ Zp 2 — M'?}
= 2+ p
Thus in the sum 72 = 42 the two terms £2 and £'2 which occur in the system with unlinked
genes are replaced by a single term £"2 in the system with complete linkage, but by the above
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equation the value of 7% is unchanged. Thus, as will be shown later, the correlations between
relatives are unaffected.

Fisher does not consider what happens with values of the recombination fraction lying between
0 and }, and he seems to imply that because there is no important difference between the extreme
cases of no linkage and complete linkage it is highly probable that the same results will be obtained
for such intermediate values. l

However, there are serious gaps in the argument to be filled before this is demonstrated. It
might be thought that a population in which the recombination value was inside the interval
(0, %) could be regarded as a mixture of two populations in one of which linkage is absent and in
the other in which it is complete. Simple calculations show that this is not correct.

When linkage is complete the gene combinations, (4, B,), can be regarded as single genes and
there are no restrictions on the frequencies which can be assigned to them. In particular we can
suppose, as above, that (4, B,) has frequency p,ps(1+ F,,). But if linkage is not complete the
frequencies of gene combinations are determined by the properties of the system and can no
longer be chosen at will. It is therefore of interest to show that the frequency of A, B, can still be
taken as p, p; in a stable population.

When the mating is not assortative, and F,, = 0, this is well known. It can be proved for
assortative mating in the following way. Suppose first that the two loci are unlinked. Then
- a double heterozygote, 4, 4, B, B, can arise in two ways, Either 4, B; comes from one parent
and 4, B, from the other (call this ‘ coupling’), or 4, B, comes from one, and 4, B, from the other
{‘repulsion’). The frequencies of 4, B, and 4,8, are

pp'(1+ Fy) = pp'{1+ (uLL'[V)},
and qq' {1+ (pMM'[V)}.
The average deviation of individuals giving rise to 4, B, is L + I/, and that of individuals giving

rise 4,B,is M + M'. If there was no assortative mating the probability of such a pair of gametes
would be the product of their frequencies. However, with assortative mating this product has

to be multiplied by exp [(#/V)(L+L") (M+ M),
which can be approximated by
L+ (pf VY L+ LY (M +M).
Thus with assortative mating the total probability of such a pair of gametes is
op'eq {1+ (V) [LL' + MM' +(L+ L") (M + M")}}
= pp'gq" {1+ (p/V) (LM + L'M' + (L + M) (L' + M"))}.
By symmetry we get the same probability of a union between A, B, and 4, B, so that coupling
and repulsion are equally frequent.

Suppose that we have a stable population in which there is no linkage, and instantaneously
linkage isintroduced with recombination fraction c where 0 < ¢ < %. Inthe immediately following
generation the only effect which could oceur would be a change in the proportion of offspring of
double heterozygotes. From a double heterozygote in coupling we get gametes in the proportion

${1—c}d; By +304, By+ 304, By +3(1—c) 4, B,,
and from one in repulsion we get:
ted; By +#(1—c) 4, By + 4(1—¢) A; B+ §c4, B,
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Since coupling and repulsion heterozygotes have the same phenotype, they have the same
probability of mating with any particular genotype, and since coupling and repulsion are equally
frequent, the gametes produced by all heterozygotes will have frequencies which are the averages

of the above frequencies, i.e. 314, B, + 34, By + 34, B, + 14, B,,
which is just what happens if ¢ = }, i.e. when there is no linkage.

Since the introduction of linkage has not changed the frequencies in the next generation the
population remains stable in all further generations.

The same argument can be used to show that the parent—offspring correlationis independent of
the recombination fraction. It does not show at once that the same is true for sib—sib and more

distant relationships but this is plausible. Fisher does not discuss these more complicated cases
in his paper and we do not pursue the matter further.

** The mean deviations associated with these 4 gametic types are L+ 1L/, M+ M’, ..., and we therefore write
L=L4+L, M=L+M, N=M+IL, O=M+M.

“ Further, if these gametic types occur with frequency,

p=pp{l+(u/V)LL}  q=pg{i+(p/V)LM"}

r=gp{l+u/V)ML} s=qq{1+u/V) MM},

it is clear that the frequencies with which the homozygous phases oceur, such as
P L+ .0) = PP {1+ (p/ V) (L2 + L2+ 4LL}},
{1+ (u/V) (L+ L)% = p*(1 + (u/V)LA),

are exactly those produced, if there really were a single tetramorphic factor,
**In the same way the phases heterozygous in one factor also agree, for

2p°0°¢ (V111 0) = 20°P° {1 + (f V) LA+ L/ M’ + 2L(L + M7))}
= 2pq{l +{u/V){L+L)(L+ M)} = 2pgfl +(#/V)LM}.
“ Finally, taking half the double heterozygotes,
2pgp’q’ (L +f1y 10) = 2pgp’q" {1 + (g V) LLM + L'M' + (L + M) (L' + M')]}
2ps{l+(u/ V(L + L) (M + M')} = 2ps{l +(p/V)LO},
or, equally, 2qr{l + (4] V) (L+ M) (M + L)} = 2qr{l +(#/V) MN}

“From this is appears that a pair of factors is analytically replaceable by a single factor if the phase
frequencies be chosen rightly: but the only difference in the inheritance in these two systems is that in the one
case there is no coupling, and in the other coupling is complete. It would appear, therefore, that coupling is
without influence upon the statistical properties of the population.”

¥isher now considers the correlations between individuals in a population in which there is
assortative mating and environmental effects. To do this he uses regression theory. Suppose all
measurements are taken from the mean of the population. Let x be the measurement in one
individual and X in another. The correlation between x and X is then

p = cov (z, X) {var (x) var (X)} %
= cov (x, X)/V.

We suppose so many factors are acting that the joint distribution of  and X is bivariate normal
s0 that the regression lines are straight. Then the expected value of X for any given z is

E(X |givenz) = fz = px and p=2z1E(X|givenx).
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Fisher tacitly supposes that the effects of environment can be represented by an addition to the
measurement which is independent of the genetic value so that there is no ‘interaction’ between
genotype and environment. This ‘environmental deviation’ is supposed to be normally distri-
buted with zero mean and constant variance, and is not correlated among relatives. Then,
measuring from the mean, we can write

z = observed value
= g {genetic value)+ environmental effect

= z (representative value) + dominance deviation +environmental effect.

These three terms, the first two of which are sums over the various loci, are mutually uncorre-
lated. Thus with a large number of loci, the joint distribution of (z, , 2) is trivariate normal, with

z (representative value), y—z (dominance deviation), and z—y (emnronmental effect) ali
statistically independent. It therefore follows that

cov{z,y)=var{y)=V
cov (x,z) = cov (y,z) = var (z),
var (z) = var (y) + var (),

where 7 is the environmental effect.
Thus for the regression coefficients we find

byy=byo=b, ,=1.

V.2

Then an increase 8z in the representative value will on the average increase both the genetic
component y, and the observed measurement z, by dz. This is also evident from the above
decomposition, '

Thus we have cov (2 ) | var (y)

var(x)  var(z)’

v = G (say) =

var(z)  7®

and, using (XXVIb&), b,y = €q (saYy) = var(y) o°—de’

- Now let z, y, z be the values for a father, and X, Y, Z, the corresponding values for his son.
The regressions of the valves X, ¥, Z, on z, y, z will arise in two ways. In the first place, the
partial regression of Z on z, keeping the mother fixed, will be } (from the table in section 5).

The dominance deviations (y —z), (¥ — Z), and the environmental effects (x—y), (X — Y, are
uncorrelated with each other and with z, Z. Thus it is easy to find the regressions of anyof X, ¥, Z,
onany of z, ¢, 2.

However, there is a second indirect component of regression arising from the fact that the son’s
Z is correlated with the mother’s representative value, which isin turn correlated with the father’s
because of assortative mating. Fisher now finds this extra component of regression under three
different hypotheses about the nature of assortative mating, namely that the underlying
association is between (1) the observed characters x; (2) the genetic components y; (3) the repre-
sentative values z.

Notice that he now uses g for the observed correlation between the « values, whereas in the
previous discussion it was the correlation between the y’s.
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“17. The effects both of dominance and of environment may be taken into account in caleulating the
coefficient of correlation: if we call x the actual height of the individual, y what his height would have been
under some standard environment, and z what his height would have been if in addition, without altering the
extent to which different factors are associated, each phase is given its representative value of Article 5. Then,
since we are using the term environment formally for arbitrary external causes independent of heredity, the
mean z of a group so chosen that y = # for each member will be simply £, but the mean y of & group so chosen
that » = ¢ for each member will be ¢, ¢, where ¢, is a constant equal to the ratio of the variance with environment
absolutely uniform to that when difference of environment also makes its contribution. Similarly for the
group z = f, the mean value of ¥ is £, but for the group y = # the mean z is ¢y ¢, where

2

Cp = m . (XXVII)
“ Now, we may find the parental and grandparental correlations from the fact that the mean z of any
sibship is the mean z of its parents: but we shall obtain very different results in these as in other cases,
according to the interpretation which we put upon the observed correlation between parents. For, in the
first place, this correlation may be simply the result of conscious selection. If the correlation for height stood
alone this would be the most natural interpretation. But it is found that there is an independent association
of the length of the forearm:* if it is due to selection it raust be quite unconscious, and, as Professor Pearson
points out, the facts may be explained if to some extent fertility is dependent upon genetic similarity, Thus
there are two possible interpretations of marital correlations. One regards the association of the apparent
characteristics as primary: there must, then, be a less intense association of the genotype ¥, and still less of 2.
The other regards the association as primarily in % or 2, and as appearing somewhat masked by environmental
effects in the observed correlation. In the first place, let us suppose the observed correlation in x to be primary.”

In the discussion below, assuming this first interpretation of marital correlation, if one parent
has the value z = ¢, the children will have the value

€1 €y —l—iz-ﬁt

1+
and not €10y 9 £

as misprinted in the paper. The remainder of the formulae follow.

* Then if g is the correlation for z, ¢, g will be that for y, and this must be written for g in the a,ppiica’olons
of the preceding paragraphs. Hence A= oyoup
Rt T ¥ ud 4

and g, ¢, 4 and A are the marital correlations for z, y, and z.
* Sinee the mean z of a sibship is equal to the mean z of its parents, we may calculate the parental and

grandparental correlations thus: for group chosen so that # = #: mean y, § = ¢, #; mean 2,z = ¢; ¢,¢; ¥ of mate
is ut; z of mate is ¢, ¢, uf. Therefore 2 of children is

1+u
¢ ¢
102
“ Hence, since there iz no association except of z between parents and child, the parental correlation
coefficient is 1+
€105

Now, since we know the mean z of the children to be

+#

€1 Gy t,

. . 1+
the mean z of their mates 1s 16y 2’“ At,

* Pearson and Lee, ¢ On the Laws of Inheritance in Man.” Biometrika, 2, 374.
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and the grandparental correlation coefficient will be

Similarly, that for the (n+ 1)th parent will be

14+p {14437
oyt (57

giving the Law of Ancestral Heredity as &-necessa.ry consequence of the factorial mode of inheritance.
**18. If we suppose, on the other hand, that the association is essentially in y, the coefficient of correlation
between ¥ of husband and y of wife must be g/fe, in order to yield an apparent correlation g, Also

.r?.
6y = ————
P g, —Ae?’

and A= Con

%

4 is the observed correlation of #’s. If the structural correlation occurs in the y’s, it must there-

fore have value ue; so that 4 = eyluei) | .

and the argument proceeds as before.

* The parental correlation found as hefore is now

¢ e+ Ae
2
and the higher ancestors are given by the general form

¢ et de (144747
2 2/’

although A is now differently related to ¢,, ¢, and .

“In the third case, where the essential connection is between z of husband and 2z of wife-—and this is a
possible case if the agsociation is wholly due to selective fertility or to the selection of other features affected
by the same factors—the equation between the correlations for y and z is changed, for now the marital
correlation for y is equal to A¢, when we retain the definition

1-2
Cp == —0———=.
2T g2 Aet

**Hence also g = Ac, e,
and the correlation coefficients in the ancestral line take the general form
14+ A\t
€10 (T) .

19, On the first of these theories & knowledge of the marital and the parental correlations should be
sufficient to determine ¢, ¢,, and thence to deduce the constant ratio of the ancestral coefficients.
Thus for three human measurements:

Stature Span Forearin
L 0-2804 0-1989 0-1977
P 0-5066 0-4541 04180
¢, Cy 0-7913 07576 0-6980
A 0-2219 0-1507 0-1377
H14+4) 0-6109 0-5753 0-5689

These figures are deduced from those given by Pearson and Lee (loc. ¢it.), neglecting sex distinctions, which
are there found to be insignificant, and taking the weighted means.”

4 M&S
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In the table above, & is the observed correlation between mates as taken from Pearson and Lee,
and p is the observed parental-offspring correlation. We then find ¢, ¢;, 4, and (1 4 4) from the

formulae
1+
p= 0102‘_2£’ A = o 051

 These values for }(1+ 4) agree very satisfactorily with the two ratios of the ancestral correlations which
have been obtained, 0-6167 for eye colour in man, and 0-6602 for coat colour in horses. It is evident that if we
also knew the ratio of the ancestral correlations for these features, we could make a direct determineation of
A and ascertain to what extent it is the cause and to what extent an effect of the observed marital correlation.

* 20. The correlations for sibs, double cousins, and more distant relations of the same type, in which all the
ancestors of & certain degree are commmon, may be found by congidering the variance of the group of collaterals
deseended from such ancestors. The variance of a sibship, for example, depends, apart from environment, only
upon the nurnber of factors in which the parents are heterozygous, and since the proportion of heterozygotes
is only diminighed by a quantity of the second order, the mean variance of the sibships must be taken for our
purposes to have the value appropriate to random mating,

Ir2 4+ 36% = 2V [2ey(1 — A} 4+ 3(1 —¢3)]

plus the quantity (V/e,)— V due to environment. But the variance of the population is ¥/e;; and the ratio of
the two variances must be 1 —f, where f is the fraternal correlation. Hence

F= e (1 46,4+ 2c,4).7

Still assuming the first model of correlation basically between the «’s, we have to find the
‘variance of a sibship’. We imagine the number of individuals in a sibship indefinitely increased,
and then the #’s of the resulting individuals will have a distribution with mean m,, say, and
variance v,. Both of these will depend on the genetic character of the parents. The observed value,
2, of & random sib from a random sibship may be decomposed into two parts as

x = mg+ (x—my),
where x and m, are both random variables. Since in any one sibship we have
| E(z—my) =0,
by definition, we also must have E{m x—my )} =0
within each sibship, and therefore in the whole population. Thus m, and (& —m,) are uncorre-
lated. From this it follows that
var () = var (m,) + var (x —m,),
= ¥, 8aY.
Here var (x —m,) means the mean value of (x — m,)? taken over all sibs in all sibships. Itis therefore
the mean value of v, taken over all sibships and can be written as v,. Then
var (mg) = v, —7,.
If z, X, are the measurements of a random pair of sibs from a random sibship,
cov (¢, X) = cov (my+ {x —my}, my+{X —m})
= var (my)
= Uy, — Vg
Thus the sib—sib correlation is

cov (z, X) R

= T @yver (00}~ oo~ vy

o=
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This can be written 3, = (1—f) o,

The variance, v,, within any sibship depends only on segregation within that sibship and
therefore only on those genes for which the parents are heterozygous, since if the parents are
homozygous the effect is to make a constant addition to all sibs alike. But the frequencies of
heterozygotes at any locus are affected by assortative mating only by a small quantity so that
the variance within sibships will be changed by a proportionally small quantity. Thus 7, can be
taken, nearly enough, to have its value for random mating, although var (m,) will have to be
changed.

If there are no environmental effects, and no assortative mating, the correlation between the

sibs is 72 4 L
20?
Thus the covariance between sibs is 312+ €2,

which will be unaffected by any environmental effects which are such that they are uncorrelated

in the sibs. We also have A
V =var(y) = o+ T2
1-4
= 724+e2 4+ 7 fAT2’
72 1-2

2T E e T Ay (1< A)e

Solving these equations for 72 and 62 we get
72 = Veg(1—4), €= TV(l—g,)
From these we have
cov (%, X) = 7% + 12
= 3V{2,(1 — 4)+3(1 —¢,)}.
We also have ¢, = var (y)/var (x) = Vo1,

and substituting in the formula for f we get Fisher’s result.

For double cousins we argue as follows. At any one locus each member of a double cousinship
may be regarded as having one gene chosen at random from the four carried by his father’s
parents, and one chosen at random from the four carried by his mother’s parents. The variances
of the cousing within the cousinship will depend only on the dissimilarities within each of these
two sets of four genes, and therefore by the same argument as before, will be almost independent
of assortative mating.

Let x and X be the observed values of the two double cousins, and f the correlation between
them. The variance of the population, and therefore of x or X is Ve %, and the variance due to
environmental effects is Ve;* — V. Then the variance of  — X must be

Elx—-X)?2 = 2Ver Y1 —f)
on the one hand, and B(w—X)? =2V (71— 1)+ 202 — }r2— ke?)

on the other, because the correlation between the genetic components for double cousins is

known to be 1 .
o2 e,

Thus the second term above is the genetic component of variance.
4-2
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Putting o2 = 72+ €2, and substituting for 72 and €%, we get
VerH(1—f) = Vieg' ~ 1)+ Vi{fex(1 - A) + (1 —co)}s
so that 1—f=1—c¢,+c eyl —A)+130,(1—cy),
and J = ex{de + Tgra + §A0o}.

* In the same way, the variance for a group of double cousins is unaffected by selective mating, and we find
the correlation coefficient for double cousins to be

Hze {1+ 3+ 12¢, 4),

showing how the effect of selective mating increases for the more distant kin.
* On the first hypothesis, then, we must write,

_ . T4 u
l"“c_l“‘é;! P=6t—5
and J=1e{l+0y(1+24)})

“ 21. Weghall use this formula for the fraternal correlation to estimate the relative importance of dominance
and environment in the data derived from the figures given by Pearson and Les.
* Agsuming as the observed correlations

Stature Span, Cubit
i3 , 0-2804 0-1989 0-1977
P 0-5066 04541 0-4180
I 0-5433 0-53561 0-4619
we obtain as before
€y Cy 0-7913 01575 0-6980
A 0-2219 0-1507 0-1377
and caleulating ¢, from the formula ¢ = &f—cy0,(1 +24),
we obtain the three values 1-031 1-155 0-957

with a standard evror of 0-072, and a mean of 1-048.”

Presumably by ‘standard error’ Fisher means ‘standard deviation of the observed values’.
However, this is not clear; the standard deviation based on two degrees of freedom would be
0-100, not 0-072 and the standard errors in the next table also do not agree. It is not clear what
precisely is in Fisher’s mind here. He does all his calculations to three or four decimal places.
But he does not give any indication of the accuracy of the correlations on which his calculations
are based, other than the ‘standard errors’ quoted from time to time. These do not seem to be
standard errors in the sense of the term most used nowadays, namely, the standard deviation
of the estimate to be expected in repeated sampling. The text suggests that the three values of ¢;
for respectively stature, span and cubit were looked upon as if they were three estimates of
some ‘ideal’ or ‘true’ value of ¢,, differing from this only by random fluctuations.

** This relatively large standard error, due principaily to our comparative ignorance of the fraternal corre-
lations {errors in g have scarcely any effect, and those in p are relatively unimportant), prevents us from
making on & basis of these results a close estimate of the contributions to the total varience of the factors
. under consideration.
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“ Remembering that ¢, is intrinsically less than unity, the second value is inexplicably high, whilst the firgt
and third are consistent with any value sufficiently near to unity. The mean of these results is materially
greater than unity, and therefore gives no support to the supposition that there is any cause of variance in
these growth features other than genetic differences. If this is so, we should put ¢, = 1, and compare the
observed values of f with those calculated from the formula

4f = L+4e (1 +24).
“* With their standard errors we obtain

Standard

Stature Span Cubit error -
Observed 0:5433 0-5351 0-4619 -016
Caleulated 0-5356 0-4964 0-4726 0-008
Difference —0-0077 —0-0387 +0-0107 0-018

*'The exceptional difference in the fraternal eorrelations for span might, perhaps, be due to the effects of
epistacy, or it may be that the terms which we have neglected, which depend upon the finiteness of the number
of factors, have some influence. It is more likely, as we shall see, that the assumption of direct sexual selection
isnot justified for this feature. Accepting the aboveresults for stature, we may aseribe the following percentages
of the total variance to their respective causes:

% %
Ancestry b4
Variance of sibship:
72 31
36 15
Other causes
46
100
Apain it may be divided:
Genotypes (o?):
Essential genotypes (%) 62
Dominance deviations (¢?) 21
: 83
Association of factors by homogamy 17
Other causes —
100

“These determinations are subjech, as we have seen, to considerable errors of random sampling, but our
figures are sufficient to show that, on this hypothesis, it is very unlikely that so much as 5 per cent of the total
variance ig due to causes not heritable, especially as every irregularity of inheritance would, in the above
analysis, appear as such a cause.

“ It is important to see that the large effect ascribed to dominance can really be produced by ordinary
Mendelian factors. The dominance ratio €2/o?, which may be determined from the correlations, has its numerator
and denominator composed of elements, 4% and «2, belonging to the individual factors. We may thereby
ascertain certain limitations to which our factors must be subject if they are successfully to interpret the
existing results. The values of the dominance ratio in these three cases are found to be:

Standard
Stature Span Cubit error
Dominance ratio 0-253 0274 0-336 0-045

92, The correlations for uncles and cousins, still assuming that the association of factors is due to a direct
selection of the feature #, may be obtained by the methods of Article 14, using the two series already obtained:

that for ancestors . 1 p (L+A\
1€y -"2 ) H

and that for collaterals, like sibs and double cousins, which have all their ancestors of a certain degree in
common, polL+ o1+ 24)],

facy[1 4+ 3cy(1+44)],
and so on.
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* Thus if a group be chosen so that x = £,
7 of group is ¢, ¢,
2 of group is ¢, cat,
+4

1
z of sibs is ¢, a5~ ¢,

also ¥ of sibs is fe,[1+e5(1+24)]¢,
7 of aibs mates is }¢,[1+ {1+ 2A4)] oy i,
% of siby mates is }e,[1 +¢,{1+24)] 4¢.
Hence % of nephews is Jo,[2c,{1 + A) + {1+ c,{1+24)} A]4,
2
giving the correlation €1 Cy (li:;i) +ie, 4(1 —gy).

‘* Again for cousins, if a group be chosen so that z = ¢, we have

2
¥ of uncles is [61 Cy (IZA) +§01A(1—c,):| Z

= . 1+.4)\2
Z of unecles is ¢, ¢, )

= . 1+.43\*
and Z of uncles mates is | ¢ ¢, —5 +ie; A(l—cy) [ AL,
A\? .
hence z of cousins is I:c1 Cy (1%) +3%0 A%1 -cg):| Z,
- . 14-A4\2
giving the correlation 0103 | —5 + ko, A1 —-cy).

“ The formulae show that. these two correlations should differ little from those for grandparent and great-
grandparent, using the values already found, and putting ¢; = 1 we have

Stature Span Cubit
Grandparent 0-3095 0-2612 0-2378
Great-grandparent 0-1801 01503 0-1353
Uncle 0-3011 0-25563 ' 0-2311
Cousin 0-1809 0-1445 0-1288

*23. Onthe third supposition, that the marital correlation is due primarily to an association in the essential
genotype z, we obtain results in some respects more intelligible and in accordance with our existing knowledge.
* From the fundamental equations
4 p=cied, p=Heotu),
we mey deduce ¢ 6 =2p—p, A=p/(2p—u),
whence the following table is calculated:

SBtandard

Stature Span Cubit error
y/2 0-2804 0-1989 0-1977 0-0304
P 0-5066 0-4541 0-4180 0-0115
f 0-5433 0-5351 0-4619 0-0160
Cy ¢y 0-7328 0-7093 0-6383 0-038
A 0-3826 0-2804 0-3097 0-028
1+ 4) 0-6913 0-6402 0-6549 . 0014

and making use of the fraternal correlations to separate ¢, and ¢,, by the equations
f=tell+e(l+24)],
ar ¢, = 4f —2p —pt,
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we obtain
¢ 0:8796 10333 0-8139 0-078
¢y 0-8331 0-6864 0-7842 0-077
o 0-2450 0-3883 0-2850 0-105

“The standard error for the dominance rabio is now very high, since the latter is proportional to the
difference f—p. If we assume a known value for ¢;, end calculate the dominance ratio from p and x only,
the standard error falls nearly to its value in Article 18,

' The three values for the ratio of the ancestral correlations 0-691, 0-640, 0-855 are now higher than that
obtained from cbservations of eye colour, and are more similar to the value 0-660 obtained for the coat colour
of horses. Without knowing the marital correlations in these cases, it is not, possible to press the comparison
further. It would seem unlikely that the conscious choice of a mate is less influenced by eye colour than by
growth features, even by stature. But it is not at all unlikely that eye colour is butb slightly correlated with
other features, while the growth features we know to be highly correlated, so that a relatively slight selection in
a number of the latter might produce a closer correlation in each of them than a relatively intense selection of
eye colour.

* The value of ¢; for span is still greater than unity, 1-033, but no longer unreasonably so, since the standard
error ig about 0-078. If we were considering span alone the evidence would be strongly in favour of our third
hypothesis. A remarkable confirmation of this is that Pearson and Lee (loc. ¢it, p. 375), considering organic
end marital correlations alone, show that the observed correlations could be aceounted for by the following
direct selection coefficients:

Stature Span Cubit

0-2374 0-0053 0-1043

Naturally these cannot be taken as final, since there are a large number of other features, which may be
connected with these and at the same time may be subject to sexual selection. The corrslations of cross
aggortative mating are in fact smaller than they would be if direct selection to this extent were actually taking
place. The influence of other features prevents us from determining what proportion of the observed association
is due to direct selection, but if inheritance in these growth features is capable of representation on a Mendelian
scheme—and our resulie have gone far to show that this is likely—it would be possible to distinguish the two
parts by comparing the parental and fraternal correlations with those for grandparents and other kindred.

** On our present supposition that the association is primerily in 2z and for the case of span this seems likely,
the correlations for uncle and cousin will be the same as those for grandparent and great-grandparent, being

given by the formulae (1 +A)“ (1 +A)3
ety l— and ¢ c(—)
leading to the numbers
Stature Span Cubit
Grandparent 0-3502 0-2907 0-2737
Great-grandparent 0-2421 0-1861 0-1793

Fisher now considers the hypothesis that the observed correlation 4 between the phenotypes
x of the parents arises as the summation of two effects. The first is a direct correlation s, which is
the result of direct sexual selection. Fisher calls this the ‘coefficient of selection’. The second
part, 4 — s, is a reflection of a correlation between their z-values, arising differently. Each of these
parts can be treated as regression coefficient. He thus supposes that the effect on a child is the
sum of the effects which arise by these two causes.

Now the direct correlation or regression s between the phenotypes z of the parents produces
a correlation ¢,c,s between their z-values, as shown in Section 22, and hence a regression ¢; ¢,
of the z-value of the father on that of the mother. The further correlation g — s between the parents’
x-values is a reflection of a correlation (u — 8)/c, €, between their z-values, as shown in Section 17,
and hence a regression (- s)/c; ¢,. I we suppose that these can be legitimately added together,
the total regression of one z-value on the other is

A = 6168+ (e —8)]ey ¢y

and this is equal to their correlation.
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Similarly the divect correlation s produces a regression 3¢, ¢,(1+s) of child on parent, and the
correlation (x — s)/c, ¢, between the z-values of the parents produces a further regression (x — s})/2.
Adding these, we find for the total regression of child on parent, which is the same as the correla-
tion between them

P = §e165(1+ )+ Hp—s).

The argument by which Fisher deduces the value

F=1c(1+ey+20,4)

= }e; + e, 05(1 +24)

for the correlation between sibs still holds. From it we find
Cp = C4Co{1 - 24) —4f.

* 24, Neither these nor the similar table for the first hypothesis accord ill with the value obtained for
uncle and nephew, 0-265, from measurements of eye colour. It may, however, be thought that neither of
them give high enough value for cousins. Certainly they do not approach some of the values found by Miss
Elderton in her memoir on the resemblance of first cousins (Bugenics Laboratory Memoirs, 1v). Series are there
found to give correlations over 0-53, and the mean correlation for the measured features is 0-336. From special
considerations this is reduced to 0-270, but if the similarity of first cousins is due to inheritance, it nust certainly
be less than that between uncle and nephew, No theory of inheritance could make the correlation for cousins
larger than or even so large as that for the nearer relationship.

It will be of interest finally to interpret our results on the assumption that the figures quoted (Articie 20)
represent actual coefficients of selection. Manifestly it would be better to obtain the value of 4 experimentally
from the ratio of the ancestral correlations, using the collateral correlations to determine what are the marital
correlations for y. For the present we must negleet the possibility of an independent selection in y: and
although we know that the figures are not final, we shall write s, the coefficient of selection, equal to 0-2374,
0:0053, and 0-1043 in our three cases.

** Further, lot

. p=s
A =ces+ oy’
so that 2p =yl +8)+p—s,
whence we deduce
Stature Span Cubit

€1 Cy 0-7841 7108 0-8725
A 0-2410 0-2761 0-2090
1+ 4) 0-6208 0-6381 (0-6045

the values of 4 being now in much closer agreement for the three features. Further, from the fraternal

lati h
correlation we have ¢ 1-0112 1-0370 0-8940
with a mean at 0-9821.
** Again, for the dominance ratio

0:2763 0-3880 0-2940 0-3194 (mean},

leaving a trifle under 2 per cent for causes not heritable, but requiring high values about 0-32 for the dominance
ratio.

* 25, The Interpretation of the Statistical Effects of Dominance. The results which we have obtained, although
subject to large probable errors and to theoretical reservations which render an exact estimate of these errors
impossible, suggest that the ratio ¢?/0?, the statistical measure of the extent of dominance, has values of about
0-25 to 0-38. In his initial memoir on this subject Karl Pearson has shown that, under the restricted conditions
there considered, this ratio should be exactly }. Subsequently Udny Yule (Conference on Genetics) pointed
out that the parental correlation could be raised from the low values reached in that memoir to values more
in accordance with the available figures by the partial or total abandonment of the assumption of dominance.
To this view Professor Pearson subsequently gave his approval: but it does not seem to have been observed
that if lower values are required—and our analysis tends to show that they are not—the statistical effects are
governed not only by the physical ratio d/a, but by the proportions in which the three Mendslian phases are
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present. This effect is an important one, and very considerably modifies the conclusions which we should draw
from any observed value of the dominance ratio. .

* The fraction §%/«?, of which the numerator and denominator are the contributions of a single factor to &2
and &%, is equal, as we have seen {Article 5, equations V-VII) to

2pqd?
(p+q)ta®—2(p®—g¥) ad + (p+ ¢*) d*’

and depends wholly upon the two ratios d/g and p/g. We may therefore represent the variations of this function
by drawing the curves for which it has a series of constant values upon a plane, each point on which is specified
by a pair of particular values for these two ratios. The accompanying diagram (fig. 1) shows such a series of
curves, using d/a and log (p/g) as co-ordinates, The logarithm is chosen as a variable, because equel intensity of

selection will affect this quantity to an equal extent, whatever may be its value; it also possesses the great
advantage of showing reciprocal values of p/g in symmetrical positions.”
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Fig. 1. Values of logy, {p/g) (upper figures) and of p/g (lower figures).

The dominance ratio given above is obtained by simple substitution of P = p?, @ = pgq, B = ¢2,
p+q=1,into (V) and (VII).
In the paragraph below, the figure 3 is misprinted for 0-3.

“It will be seen that 3 is not by any means the highest value possible: when d = «, and when p/qg is very
great, any value up to unity may appear; but high values are confined to this restricted region. When d/e is
less than 0-3 the ratio is never greator than 0-05, and we cannot get values ag high as 0-15 unless d/a be as great
as 0-5. On the other hand, all values down to zero are consistent with complete dominance, provided that the
values of p/q are sufficiently small.

* We know practically nothing about the frequency distribution of these two ratios. The conditions under
which Mendelian factors arise, disappear, or become modified are unknown. Tt has been suggested that they
invariably arise as recessive mutations in a dominant population. In that case pfg would initially be very high,
and could only be lowered if by further mutation, and later by selection, the recessive phase became more
frequent. These factors would, however, have little individual weight if better balanced factors were present,
until p/g had been lowered to about 10. In face of these theories it cannot be taken for granted that the
distribution of these ratios is & simple one. It is natural, though possibly not permissible, to think of their
distributions as independent. We may profitably consider further the case in which the distribution is sym-
metrical, in which the factor of known o and d is equally likely to be more frequent in the dominent as in the
recessive phase.

“ For this case we combine the numerators and denominators of the two fractions

2pqd? . and 2pgd?
(p+qYat—2(p2—g?)ad+{(p*+q%) dt (p+9)a%+2(p*—q*) ad + (p? +¢%) d*’
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and obtain the joint contribution 2pgd,
(p+9)*a®+(p*+ %) d?

the curves for which are shown in fig. 2, representing the combined effect of two similar factors, having their
phases in inverse proportions. It will be seen that complete dominance does not preclude the possibility of low
value for the dominance ratio: the latter might fall below 0-02 if the greater part of the variance were contri-
buted by factors having the ratio between p and ¢ as high as 100 to 1. This ratio is exceedingly high; for such
& factor only one individual in 10,000 would be & recessive. We may compare the frequency of deaf mutism
with which about one child in 4000 of normal parents is said to be afflicted. It would be surprising if more .
equal proportions were not more common, and if this were so, they would have by far the greater weight.

* The fact that the same intensity of selection affects the logarithm. of p/¢ equally, whatever its value may
be, suggests that this function may be distributed approximately according to the law of errors, This is a
natural extension of the assumption of symmetry, and is subject to the same reservations, For instance, a
factor in which the dominant phage is the commonest would seem less likely to suffer severe selection than one
in which the recessive phase outnumbers the other. But if symmetry be granted, our choice of a variable
justifies the consideration of a normal distribution. :

 Writing £ for log, p/g and o for the standard deviation of £, we have

p=etij2cosh 3, g=et/2coshif and 2pg = }sech? L.
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Fig. 2. Values of logy, (p/g) (upper ligures) and of p/g (lower figures).

“ Hence we have to evaluate

E= w%” f: }sech? §£. e~ E°dE = ;71277 f : isech®3of. e~'df, (XX VIII)
and the dominance ratio derived from the whole group is
B
Gt (1= B)d*’

“ # is a function of ¢ only, which decreases steadily from its value 3 when o = 0, approaching when o is
large to the function 2/(¢ ./27}. The function (164 16072+ 3204}t osculates it at the origin, and appears on
trial to repregent it effoctively to three significant figures. This function has been used for caleulating the form
of the accompanying curves. Fig. 3 shows the course of the function E. Fig. 4 gives the curves comparable to
those of figs. 1 and 2, showing the value of the dominance ratio for different values d/a and ¢. If the assump-
tions upon which this diagram is based are justified, we are now advanced some way towards the interpretation
of an observed dominance ratio. A ratio of 0-25 gives us a lower limit of about 0-8 for d/a, and no upper limit,.
If the possibility of superdominance (d > a} is excluded, then the ratio of the phases must be so distributed
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that the standard ratio ev is not greater than about 3:1. A greater value of the standard ratio would make
the effect of dominarnce too small; & smaller value could be counteracted by a slight reduction of d/a. We have
therefore no reason to infer from our dominance ratios that dominance is incomplete. We may speak of it as
having at least four-fifths of its full value, but we can set no upper limit to it.
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‘ 26. Throughout this work it has been necessary not to introduce any avoidable complications, and for this
reason the possibilities of Epistacy have only been touched upon, and small quantities of the second order have
been steadily ignored. In spite of this, it is believed that the statistical properties of any feature determined
by a large number of Mendelian factors have been successfully elucidated. Due allowance has been made for
the factors differing in the magnitude of their effects, and in their degree of dominance, for the possibility of
Multiple Allelomorphism and of one important type of Coupling. The effect of the dominance in the individual
factors has been seen to express itself in a single Dominance Ratio. Further the effect of marital correlation has
been fully examined, and the relation between this association and the coefficient of marital correlation has
been made clear.
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* By means off the paternal correlation it is possible to ascertain the dominance ratio and so distinguish
dominence frorm all non-genetie causes, such as environment, which rnight tend to lower the correlations: this
ig due to the similarity in siblings of the effects of dominance which causes the fraternal correlation to exceed
the parental. The fact that this excess of the fraternal correlation is very generally observed is itself evidence
in favour of the hypothesis of cumulative factors, On this hypothesis it is possible to calculate the numerical
influenice not only of dominance, but of the total genstic and non-genetic causes of variability. Anexamination
of the best available figures for human measurements shows that there is little or no indication of non-genetic
causes. The closest serutiny is invited on this point, not only on account of the practical importance of the
predominant influence of natural inheritance, but because the significance of the fraternal correlation in this
connection has not previously been realised.

“ Some ambiguity still remains as to the causes of marital correlations; our numerical conclusions are
considerably affected according as this is assumed to be of purely somatic or purely genetic origin. Itis striking
that the indications of the present analysis are in close agreement with the conclusions of Pearson and Lee as
to the genetic origin of a part of the marital correlation, drawn from the effect of the correlation of one organ
with another in causing the selection of one organ to involve the selection of another. This difficulty will, it is
hoped, be resclved when accurate determinations are available of the ratio of the grandparental to the parental
correlation. From. this ratio the degree of genetic association may be immediately obtained, which will make
our analysis of the Variance as precise as the probable errors will allow,

* In general, the hypothesis of cumulative Mendelian factors seems to fit the facts very accurately. The only
marked discrepancy from existing published work lies in the correlation for first cousins. Snow, owing
apparently to an error, would make this as high as the avuncular correlation; in our opinion it should differ
by little from that of the great-grandparent. The values found by Miss Elderton are certainly extremely high,
but until we have a record of complete cousinships measured accurately and without selection, it will not be
possible to obtain satisfactory numerieal evidence on this question. As with cousins, so we may hope that more
oxtensive measurements will gradually lead to values for the other relationship correlations with smaller
standard errors. Eapecially would more accurate determinations of the fraternal correlation make our
conclusions more exact.

“* Finally, it is a pleasure to acknowledge my indebtedness to Major Leonard Darwin, at whoge suggestion
this inquiry was first undertaken, and to whoss kindness and advice it owes its completion.”



